CRYPTOAPI-BENCH: A Comprehensive Benchmark
on Java Cryptographic API Misuses

Sharmin Afrose, Sazzadur Rahaman, Danfeng (Daphne) Yao
Department of Computer Science
Virginia Tech
Blacksburg, Virginia
{sharminafrose, sazzadl4, danfeng} @vt.edu

Abstract—Several studies showed that misuses of crypto-
graphic APIs are common in real-world code (e.g., Apache
projects and Android apps). There exist several open-sourced
and commercial security tools that automatically screen Java
programs to detect misuses. In order to compare their accuracy
and security guarantees, we develop a comprehensive bench-
mark named CryptoAPI-Bench. CryptoAPI-Bench consists of
171 unit test cases that cover basic cases, as well as complex
cases, including interprocedural, field sensitive, multiple class
test cases, and path sensitive data flow of misuse cases. The
benchmark also includes correct cases for testing false positive
rates. We evaluate CryptoAPI-Bench on four tools, namely,
SpotBugs, CryptoGuard, CrySL, and Coverity and present their
performance and comparative analysis. Our benchmark is useful
for advancing state-of-the-art solutions in the space of misuse
detection.

I. INTRODUCTION

Theoretical security guarantees of cryptography are criti-
cally dependent on its threat model [32]. A deviation from the
threat model of a cryptographic primitive is often refereed as
misuse [26,47]. Various studies have shown that a vast majority
of Java and Android applications misuse cryptographic li-
braries and APIs, causing devastating security and privacy im-
plications. The most pervasive cryptographic misuses include
exposed secrets (e.g., secret keys and passwords), predictable
random numbers, use of insecure crypto primitives, vulnerable
certificate verification [26,28,30,40,47,48].

Several studies showed that the prominent causes for cryp-
tographic misuses are the deficiency in understanding of
security API usage [15,40], complex API designs [15,43], the
lack of cybersecurity training [40], insecure code generation
tools [46] and insecure/misleading suggestions in Stack Over-
flow [16,40]. The reality is that most developers, with tight
project deadlines and short product turnaround time, spend
little effort on improving their knowledge or hardening their
code for long-term benefits [19]. Recognizing these practical
barriers, automatic cryptographic code generation [34] and
misuse detection tools [47] play a significant role in assisting
developers with writing and maintaining secure code.

The security community has produced several impressive
static (e.g., CryptoLint [26], CRYSL [35], FixDroid [45],
MalloDroid [28], CRYPTOGUARD [47]) and dynamic code
screening tools (e.g., SMV-Hunter [50], and AndroSSL [29])

to detect API misuses in Java. The static analysis does not
require a program to execute, rather it is performed on a
version of the code (e.g., source code, intermediate representa-
tions or binary). Many abstract security rules are reducible to
concrete program properties that are enforceable via generic
static analysis techniques [18,47]. Consequently, static analysis
tools have the potential to cover a wide range of security rules.
In contrast, dynamic analysis tools require one to execute a
program and spend a significant effort to trigger and detect
specific misuse symptoms at runtime. Hence, dynamic analysis
tools may be limited in their coverage. A code screening tool
needs to be scalable with wide coverage. Thus, static analysis-
based tools are usually more favorable than their dynamic
counterparts.

However, a major weakness of static analysis tools is their
tendency to produce false alerts. False alerts substantially
diminished the value of a tool. To reduce the number of
false positives, most of the static analysis tools offer a trade-
off between completeness and scalability [39]. We define
completeness as the ability to detect all the misuse instances
and scalability as the ability to induce low computational over-
head to analyze large code-bases. Designing tools that would
produce fewer false positives and false negatives with smaller
computational overhead help the real-world deployment.

To advance and monitor the scientific progress of domains to
produce effective tools, a mechanism for comparative studies
is required. Unfortunately, for automatic detection of crypto-
graphic API misuses, no suitable mechanism or benchmark
exists. Such a benchmark needs to have the following require-
ments.

o A benchmark needs to cover a wide range of misuse
instances.

o A benchmark needs to cover interesting program proper-
ties (e.g., flow-, context-, field-, path-sensitivity).

e A benchmark’s test cases should be written in easily
compilable source codes so that both source code and
binary code analysis tools can be easily evaluated.

None of the existing benchmarks follows these criteria (e.g.,
DroidBench [17], Ghera [41]). For example, DroidBench [17]
only contains binaries. Ghera [41] has sources of provided
Android apps. However, both DroidBench and Ghera barely

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

Sharmin Afrose
Highlight

cover cryptographic API misuses.

In this paper, we present CRYPTOAPI-BENCH, a compre-
hensive benchmark with 171 cases for comparing the quality
of cryptographic vulnerability detection tools. CRYPTOAPI-
BENCH covers 16 types of cryptographic misuses, includ-
ing hardcoded secrets, improper SSL/TLS certificate vali-
dations, improper hostname verifications, insecure symmet-
ric and asymmetric cryptographic primitives, insecure hash
functions and insecure pseudo-random number generators. In
CRYPTOAPI-BENCH, there are 40 basic test cases and 131
advanced test cases. Advanced test cases include interprocedu-
ral, field sensitive, multiple class, path-sensitive, and combined
complex cases.

We run CRYPTOAPI-BENCH on four static analysis tools
(i.e., SpotBugs, CRYPTOGUARD, CRYSL, and Coverity) and
perform comparative analysis of these tools. These tools are
i) capable of detecting cryptographic misuse vulnerabilities
and ii) open-sourced and/or provide free evaluation license.
CRYSL [35] and CRYPTOGUARD [47] are open-sourced re-
search prototypes that are actively being maintained to im-
prove their accuracy and coverage. SpotBugs [13] is also an
actively maintained open source project, which is the successor
of FindBugs. Coverity [4] is one of the most popular static
analysis platform for decades.

Our main technical contributions are summarized as follows.

e« We provide a benchmark named CRYPTOAPI-BENCH,
which consists of 171 test cases covering 16 types of
Cryptographic and SSL/TLS API misuse vulnerabilities.
CRYPTOAPI-BENCH utilized various interesting program
properties (e.g., field-, context-, and path-sensitivity)
to produce a diverse set of test cases. Specifically,
CRYPTOAPI-BENCH has 40 inter-procedural, 19 field-
sensitive, 20 combined (a combination of inter-procedural
and field-sensitivity) and 20 path-sensitive cases. Our
benchmark is open-sourced and can be found at:
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench.

« We evaluate four static analysis tools that are capable of
detecting cryptographic misuse vulnerabilities. Our ex-
perimental evaluation revealed some interesting insights.
Most of the specialized tools to detect cryptographic mis-
uses (e.g., CRYPTOGUARD, CRYSL) cover more rules
and higher recall than general-purpose tool (e.g., Spot-
Bugs, Coverity). However, Coverity raises fewer false
positives than all of the others. Currently, none of these
tools supports path-sensitive analysis.

The remainder of this paper is organized as follows. Sec-
tion II describes the threat models. Section III outlines the
design of CRYPTOAPI-BENCH. Section IV reviews existing
cryptographic vulnerability detection tools. Section V presents
the evaluation and performance analysis of the tools on
CRYPTOAPI-BENCH. Section VII describes the related works.
Discussion is given in Section VI. Finally, Section VIII con-
cludes this paper.

II. THREAT MODEL

In this section, we discuss the threat models of Java cryp-
tographic misuses. We consider 16 Java cryptographic API
misuse categories as cryptographic threat models and provide
secure use cases of each misuse categories. For each threat
model, we describe the corresponding cryptographic API, the
reason for vulnerability and possible solution.

1) Cryptographic keys: For encryption, it is expected to use
a secure and unpredictable key to convert plaintext to cipher-
text using javax.crypto.spec.SecretKeySpec API
that takes a byte array as input. If the Byte array is constant
or hardcoded inside the code, the adversary can easily read
the cryptographic key and may obtain sensitive information.
Therefore, an unpredictable byte array should be used as a
parameter in SecretKeySpec to generate a secure key.

2) Passwords in Password-based Encryption (PBE):

Password-based Encryption (PBE) is a popular
technique of generating a strong secret key using
javax.crypto.spec.PBEKeySpec APL It takes

three parameters (i.e., password, salt, and iteration count)
while doing the Password-based Encryption to produce
a random and unpredictable key. However, if hardcoded
or constant password is used in the code, then malicious
attackers may obtain the password and predict the key [26].
Therefore, an unpredictable password should be used as a
parameter in PBEKeySpec.

3) Passwords in KeyStore: Cryptographic ~ keys
and certificates are sometimes stored using
java.security.KeyStore APIL The KeyStore employs
a password to get access into the stored keys and certificates.
However, if a hardcoded or constant password is used for
KeyStore in the code, it poses a security threat of revealing
keys and certificates stored in the KeyStore. Therefore,
unpredictable random password should be used in KeyStore.

4) Hostname Verifier: Hostname Verifier in
javax.net.ssl.HostnameVerifier API verifies
the hostname by checking the hostname’s authentication
and identification. In some cases, verify() method of
HostnameVerifier class is set to return true by default so
that the verification method can quickly get past of an
exception. However, this arrangement causes a security
threat, where URL spoofing [14] attacks can be possible.
URL spoofing makes it simpler for numerous cyber-attacks
(e.g., identity theft, phishing). In Fig. 1, Line 2 returns true
without verifying the hostname which is a major source of
vulnerability.

1 public boolean verify(String hostname, SSLSession sslSession) {
2 K
3}

return true;

Fig. 1: Skipping hostname verification in the verify method
of javax.net.ssl.HostnameVerifier is insecure.

5) Certificate Validation: Empty methods are oftentimes
implemented in javax.net.ssl.X509TrustManager
interface to connect quickly and easily with clients and remote
servers without any certificate validation. In that case, the
TrustManager accepts and trusts every entity including the
entity that is not signed by a trusted certificate authority. It
enables Man-in-the-middle (MitM) attacks [6,28].

6) SSL Sockets: javax.net.ssl.SSLSocket
connects a specific host to a specific port. However,
before the connection, the hostname of the
server should be verified and authenticated using
javax.net.ssl.HostnameVerifier API. However,
incorrect implementation omits the hostname verification
when the socket is created [10,30].

7) Hypertext Transfer Protocol: HyperText Transfer Pro-
tocol (HTTP) sends a request to a server to retrieve a web-
page. However, the HTTP allows hackers to intercept and read
sensitive information [20]. Therefore, it is recommended to
use HyperText Transfer Protocol Secure (HTTPS) that utilize
a secured socket layer to encrypt sensitive information. In
Fig. 2, a code snippet of secure and insecure URL usage using
java.net .URL API is presented.

1 #% URL urllnsecure = "http: //1
2 URL urlSecure = "https:/

. com':
.com";

Fig. 2: Use of HTTP URL in java.net.URL API is
inherently insecure.

8) Pseudorandom Number Generator
The generation of a pseudorandom number using
java.util.Random is vulnerable as the generated
random number is not completely random, because it uses a
definite mathematical algorithm (Knuth’s subtractive random
number generator algorithm [33]) that is proven to be insecure.
To solve the problem, java.security.SecureRandom
provides non-deterministic and unpredictable random
numbers. In Fig. 3, Line 1 and Line 2 are insecure and

secured initialization of random function, respectively.

(PRNG):

1 % Random r = new Random();

2 SecureRandom sr = new SecureRandom();
3 int insecureSeed = r.nextInt();

4 int secureSeed = sr.nextInt();

5 byte [] bytes = {(byte) 100};

6 K sr.setSeed(bytes);

7 int insecureSeed2 = sr.nextlnt();

Fig. 3: Generating seeds using java.util.Random is
insecure. Random secure seeds can be generated using
java.security.SecureRandom APL

9) Seeds in Pseudorandom Number Generator (PRNG):
While using java.security.SecureRandom, if a con-
stant or static seed is provided in SecureRandom, then it is
possible to have the same outcome on every run. Therefore,

due to the predictability concern, developers should use a non-
deterministic random seed. In Fig. 3, Line 6 sets constant or
hardcoded seed values into the SecureRandom which will
produce predictable output.

10) Salts in Password-based encryption (PBE): 1In
javax.crypto.spec.PBEParameterSpec API, it
takes the salt and iteration count to set parameters for
Password-based encryption. Using constant or static salts
increases the possibility of a dictionary attack. The salt
should be a random number that produces a random and
unpredictable key. In Fig. 4, Line 2 takes a static/constant
salt that is insecure to be used in PBEParameterSpec.

1 PBEParameterSpec pbeParamSpec = null;

2 #K bytel] salt = {(byte) 0xa2};

3 ¥ int count = 20;

4 pbeParamSpec = new PBEParameterSpec(salt, count);

Fig. 4: javax.crypto.spec.PBEParameterSpec API
usage is insecure if iteration count is less than 1000 and salt
is constant/predictable.

11) Mode of Operation: Among the modes of operation,
Electronic Codebook (ECB) allows random access to each
block. However, the ECB mode of operation is insecure to use
in javax.crypto.Cipher as ECB-encrypted ciphertext
can leak information about the plaintext. Instead of ECB, Ci-
pher Block Chaining (CBC) or Galois/Counter Mode (GCM)
is secure to use. Table I provides a list of insecure and
secure modes of operation. In Fig. 5, Line 1 is an insecure
ECB implementation. Instead of ECB, secure CBC mode of
operation should be used.

12) Initialization Vector (IV): To enhance the security of
cryptography, initialization vector (IV) is used during encryp-
tion and decryption with a secret key. Using static/constant
initialization vectors introduce vulnerabilities. Therefore, it is
suggested to use an unpredictable random initialization vector
in crypto.spec.IvParameterSpec APIT.

TABLE I: Secure and insecure use of mode of operation
(Rule 11), symmetric cipher (Rule 14), and cryptographic hash
function (Rule 16)

[Threat Models | Secure | Insecure |
Mode of Operation | CBC, GCM | ECB
Symmetric Cipher AES DES, Blowfish, RC4, RC2, IDEA
Hash function SHA-256 SHAI1, MD5, MD4, MD2

13) Iteration Count in Password-based Encryption (PBE):
In javax.crypto.spec.PBEParameterSpec API, it
takes salt and iteration count to set parameters for Password-
based Encryption (PBE). In PKCS #5 [42], it is suggested that
the number of iteration should be more than 1000 to provide a
reasonable security level. Therefore, it is required to use more
than 1000 iteration to generate a secure password. In Fig. 4,
Line 3 takes an iteration count of 20 that is insecure to be
used in PBEParameterSpec.

TABLE II: CRYPTOAPI-BENCH: Summary of unit test cases. There are total 171 unit test cases with 40 basic cases and 131
advanced cases (interprocedural, field sensitive, combined case, path sensitive, miscellaneous and multiple class test cases).
Total test cases per group and per threat model rules are summarized here. Details information are presented in Section III.

Basic Two- Three- Field Combined Path . Multiple Total Cases

No. | Threat Model Rules Cases | Interproc. | Interproc. | Sensitive Case Sensitive Misc. Clasl; per Rules
1 Cryptographic Key 2 1 1 1 1 1 2 1 10
2 Password in PBE 3 1 1 1 1 1 2 1 11
3 Password in KeyStore 2 1 1 1 1 1 2 1 10
4 Hostname Verifier 2 0 0 0 0 0 0 0 2
5 Certificate Validation 3 0 0 0 0 0 0 0 3
6 SSL Socket 1 0 0 0 0 0 0 0 1
7 HTTP Protocol 2 1 1 1 1 1 0 1 8
8 PRNG 2 0 0 0 0 0 0 0 2
9 Seed in PRNG 3 2 2 2 2 2 2 2 17
10 | Salt in PBE 2 1 1 1 1 1 1 1 9
11 Mode of Operation 2 1 1 1 1 1 0 1 8
12 Initialization Vector 2 1 1 1 1 1 2 1 10
13 Iteration in PBE 2 1 1 1 1 1 1 1 9
14 | Symmetric Ciphers 6 5 5 5 5 5 0 5 36
15 Asymmetric Ciphers 1 1 1 0 1 1 0 1 6
16 | Cryptographic Hash 5 4 4 4 4 4 0 4 29

[Total Cases per Group | 40 | 20 [20 [19 [20 [20 [12] 20 I 171]

14) Symmetric Ciphers: In symmetric cryptography, the
same key is used for encryption and decryption. Some sym-
metric ciphers, e.g., DES, Blowfish, RC4, RC2, IDEA are
considered broken, as brute-force attack is possible for 64-
bit ciphers. To overcome the attack, developers need to use
AES which can support a block length of 128 bits and key
lengths of 128, 192, and 256 bits [1]. Table I provides list of
insecure and secure symmetric ciphers. In Fig. 5, Line 1 is an
insecure implementation of a symmetric cipher.

1 K Cipher cpr = Cipher.getlnstance("DES /ECB/PKCS5Padding™);
2 cpr.init(Cipher. ENCRYPT_MODE, key)

Fig. 5: Use case of javax.crypto.Cipher API is inse-
cure if DES symmetric cipher and ECB mode of operation are
used.

15) Asymmetric Ciphers: In asymmetric cryptography, two
keys, i.e., public key and private key are used for encryption
and decryption. However, some asymmetric ciphers, e.g., RSA
are considered broken as brute-force attack is possible for
1024-bit ciphers. For this reason, developers need to use RSA
with key size 2048 bits or higher.

16) Cryptographic Hash Functions: A cryptographic hash
function takes an arbitrary message as input and produces
fixed-length alphanumeric string as a character called hash
value or message digest which is commonly employed in ver-
ifying message integrity, digital signature, and authentication.
A cryptographic hash function is contemplated as broken if a
collision can be observed, i.e., the same hash value is generated
for two different inputs. Table I provides list of insecure
and secure hash functions. The list of broken hash functions
includes SHA1, MD4, MD5, and MD2. These hash functions
produce collisions that cause cryptographic vulnerabilities.
Therefore, the developers need to use a strong hash function,

e.g., SHA-256. In Fig. 6, a code snippet of the broken hash
function test case is shown.

1 K MessageDigest md = MessageDigest.getInstance("MD5");
2 md.update(message.getBytes());
3 System.out.println(md.digest());

Fig. 6: Use case of java.security.MessageDigest API is inse-
cure if MD5 is used. Hash function SHA-256 is secure.

III. DESIGN OF CRYPTOAPI-BENCH

In this section, we present the design of CRYPTOAPI-
BENCH. We describe various test case groups based on the
threat models described in Section II. These test groups
contain sources of vulnerabilities that transmit through other
procedures, classes, field variables or conditional statements.

We manually generate the unit test cases guided by 16 types
of misuses in the threat model. We divide the test cases into
two parts, i.e., basic cases and advanced cases. The advanced
cases consist of several groups, i.e., interprocedural cases,
field sensitive cases, combined cases, path sensitive cases,
miscellaneous test cases, and multiple class test cases. These
test cases incorporate the majority of possible variation in
the perspective of program analysis to detect cryptographic
vulnerability.

A. Basic Cases

Basic unit test cases of benchmark cover only the test
cases where vulnerabilities rise within the same method. These
benchmarks are quite straightforward cryptographic vulnerable
test cases for the analysis tools to detect. For example, a
vulnerable cipher is defined and used within the same method
(Fig. 5). In CRYPTOAPI-BENCH, we include 40 basic cases as
depicted in third column of Table II. The basic test cases cover
all 16 threat models specified in Section II. Among these test

cases, 27 test cases contain cryptographic vulnerability (true
positive) and 13 test cases do not contain any cryptographic
vulnerability (true negative).

B. Advanced Cases

The advanced cases of benchmark include complex cases
in order to test a tool’s capability of detecting the crypto-
graphic vulnerability. In advanced cases, we consider three
categories of vulnerable data flow analysis, including inter-
procedural, path sensitivity and field sensitivity. In addition,
we consider a combined case consisting of inter-procedural
and field sensitivity. We also designed some miscellaneous
test cases and multiple class vulnerability test cases. The
motivation of including advanced is to improve the precision
of detection of the cryptographic vulnerability detection tools.
In CRYPTOAPI-BENCH, we included 131 advanced cases. The
details of advanced cases are depicted in the third to the tenth
columns of Table II.

1) Interprocedural Cases: In interprocedural cases, the
source of vulnerability originates from a different procedure or
method and passes through as an argument. In our cases, we
generate two-interprocedural and three-interprocedural cases.
In two-interprocedural cases, the source of vulnerability is
passed as an argument to another procedure’s parameter and
then use the vulnerable parameter in the Crypto APIs. In three-
interprocedural cases, the source of vulnerability passes as
an argument to another procedure and then passed again to
another procedure. The goal of the interprocedural test cases is
to check the detection tool’s interprocedural data flow handling
capability. An example code snippet of a two-interprocedural
test case is presented in Fig. 7, where it is necessary to detect
whether a secure or an insecure algorithm is passed in Line
1 and utilized in Line 3. CRYPTOAPI-BENCH contains 40
interprocedural test cases that are represented in the fourth
and the fifth columns of Table II.

1 public void method2 (String cryptoAlgo);

2 {..

3 Cipher cipher = Cipher.getInstance(cryptoAlgo)
4

5}

Fig. 7: Example code snippet of an interprocedural test case

2) Field Sensitive Cases: In field sensitive benchmark
cases, the source of cryptographic vulnerabilities can be
detected by the analysis tools if the tools are capable of
performing field sensitive data flow analysis. In Fig. 8, the
initialization of Crypto class sets the class variable algo
with a secure or insecure crypto algorithm, which is used in
Line 9. CRYPTOAPI-BENCH contains 19 field sensitive test
cases that are represented in the sixth column of Table II.

3) Combined Cases: The combined cases are a bit more
complex. In these cases, both interprocedural and field sensi-
tivity are introduced, i.e., both Fig. 7 and Fig. 8 are incorpo-
rated to generate complicated test cases. CRYPTOAPI-BENCH

TABLE III: Total number of insecure cryptographic API use
cases (true positives) and secure cryptographic API use cases
(true negatives) in CRYPTOAPI-BENCH’s 171 test cases.

Threat Model Test Cases
True Positive | True Negative

Cryptographic Key 7 3
Password in PBE 8 3
Password in KeyStore 7 3
Hostname Verifier 1 1
Certificate Validation 3 0
SSL Socket 1 0
HTTP Protocol 6 2
PRNG 1 1
Seed in PRNG 14 3
Salt in PBE 7 2
Mode of Operation 6 2
Initialization Vector 8 2
Iteration count in PBE 7 2
Symmetric Ciphers 30 6
Asymmetric Ciphers 5 1
Cryptographic Hash 24 5

[Total Cases [135 [36]
1 class Crypto {
2 String algo
3 public Crypto (String defAlgo) {
4 algo = defAlgo;
s}
6 public void encrypt(String passedAlgo, ...) {
7 passedAlgo = algo;
8
9 Cipher cipher = Cipher.getInstance(passedAlgo);
10

11

12 }

Fig. 8: Example code snippet of a field sensitive test case

has 20 combined test cases that are represented in the seventh
column of Table II

4) Path Sensitive Cases: In path sensitive test cases, condi-
tional branch instructions are included in the code of test cases
to evaluate proper detection of a precise source of a vulnerabil-
ity. In Fig. 9, an example code snippet of a path sensitivity case
is depicted. Depending on the choice parameter, the Cipher is
getting the instance from a secure or an insecure cryptographic
algorithm. The eighth column of Table II summarizes 20 path
sensitive test cases of CRYPTOAPI-BENCH. Among the 36
true negatives shown in Table III, 20 test cases are path
sensitive cases.

public void methodl (int choice) {

1
2
3 Cipher cipher = Cipher.getlnstance (cryptolnsecureAlgol) ;
4 if (choice > 1) {

5 cipher = Cipher.getInstance (cryptoSecureAlgo2) ;

6

7

8

9

cipher.init (Cipher. ENCRYPT_MODE, key) ;

}

Fig. 9: Example code snippet of a path sensitive test case

5) Miscellaneous Cases: Miscellaneous test cases evaluate
the tool’s abilities to recognize irrelevant constraints and other
interfaces, e.g., Map. In Fig. 10, the Map interface of Line
3-6 provides a secure key or insecure key depending on the
choice variable. The Map indices (e.g., “a”, “b”) represent only
index values, not security relevant. Similarly, in Line 8, the
“UTF-8” represents byte encoding, not any constant or hard-
coded value. CRYPTOAPI-BENCH contains 12 miscellaneous
test cases that are represented in the ninth column of Table II.
Among the 36 true negatives shown in Table III, 3 test cases
are miscellaneous test cases.

public void methodl (String choice) {

Map<String,String> hm = new HashMap<String, String>();
hm.put("z", secureKeyString);

hm.put("b", insecureKeyString);

String keyString = hm.get(choice);

byte [] bytes = secureKeyString.getBytes("UTF-8");
IvParameterSpec ivSpec = new IvParameterSpec(bytes);

— O 00NN R W=

—_

—

Fig. 10: Example code snippet of a false positive test case

6) Multiple Class Cases: In multiple class test cases, the
source of vulnerabilities originates from different class meth-
ods and passes to another class. An example code snippet of a
multiple class case is shown in Fig. 11. It is necessary to detect
whether a secure or an insecure algorithm is passed in Line
4 in MultipleClassl and utilized in Line 9 in MultipleClass2.
CRYPTOAPI-BENCH has 20 multiple class test cases that are
represented in the tenth columns of Table II.

public class MultipleClassl {

public void methodl (String passedAlgo) {
MultipleClass2 mc = new MultipleClass2 ();
mc.method2 (passedAlgo);

}

public class MultipleClass2 {
public void method2 (String cryptoAlgo) {
Cipher cipher = Cipher.getlnstance (cryptoAlgo);

0NN AW N~
-

el

10
11}

Fig. 11: Example code snippet of a multiple class test case

In Table IV, the list of Java Crypto API libraries covered by
CRYPTOAPI-BENCH is shown. We consider mainly 15 such
API libraries. In addition, threat models and the total number
of test cases covered by each library are also denoted in the
Table IV. Our CRYPTOAPI-BENCH benchmark consisting of
171 unit test cases is made available in this GitHub repository:
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench.

IV. EXISTING CRYPTOGRAPHIC VULNERABILITY
DETECTION TOOLS

In this section, we summarize the vulnerability detection
tools that we choose to run on CRYPTOAPI-BENCH. We

TABLE IV: List of Java Crypto API libraries used in
CRYPTOAPI-BENCH, the corresponding threat models and test
cases per Java Crypto API library. For example, the first entry
of the table states that threat model 1 is covered by Java Crypto
API “javax.crypto.spec.SecretKeySpec” and there are a total
of 10 test cases in CRYPTOAPI-BENCH.

. . Threat Total

Java Crypto API Libraries Models Test

Cases
javax.crypto.spec.SecretKeySpec 1 10
javax.crypto.spec. PBEKeySpec 2 11
java.security.KeyStore 3 10
javax.net.ssl.Hostname Verifier 4 2
javax.net.ssl.X509TrustManager 5 3
java.security.cert. X509Certificate 5 3
javax.net.ssl.SSLSocket 6 1
java.net.URL 7 8
java.security.SecureRandom 8,9 19
javax.crypto.spec.PBEParameterSpec 10, 13 18
javax.crypto.spec.IvParameterSpec 12 10
javax.crypto.KeyGenerator 14 36
javax.crypto.Cipher 11, 14, 15 50
java.security.KeyPairGenerator 15 6
java.security.MessageDigest 16 29

consider three criteria while choosing the analysis tools. (1)
Open-sourced tools: The open-sourced vulnerability detection
tools, i.e., CRYSL [35], CRYPTOGUARD [47], SpotBugs [13]
are convenient to use as we are able to analyze their codes
and understand the reason of their lack of performance. (2)
Static analysis tools: We choose static analysis tools that
can examine and detect vulnerability without executing the
code. SpotBugs, CRYPTOGUARD, CRYSL and Coverity [4]
are static analysis tools. (3) Free cryptographic vulnerability
detection services: We consider Coverity as a provider of free
cryptographic vulnerability detection service. Coverity is not
open-sourced. However, Coverity provides online service to
detect vulnerability.

We also consider GrammaTech [9], QARK [11] and Fix-
Droid [45]. However, GrammaTech is a commercial tool.
We were unable to access its trial version. The online
SWAMP [25] contains GrammaTech tool to use that only
supports vulnerability detection for C and C++. Therefore, we
excluded GrammaTech from our list of tools. QARK is a tool
that is mainly designed to capture security vulnerabilities in
Android applications. FixDroid is built as a research prototype
that is embedded as a plugin in Android Studio to conduct
a usability study. Our investigation shows that the detection
capability of FixDroid and QARK is limited. Though QARK
has been maintained and updated, FixDroid has not been
updated since 2017.

Therefore, we mainly focus on four tools, i.e., Spot-
Bugs, CRYPTOGUARD, CRYSL and Coverity to evaluate on
CRYPTOAPI-BENCH.

1) SpotBugs: SpotBugs is a static analysis tool also for
capturing deficiencies in Java code. This analysis tool is
a successor of another popular static analysis tool named
FindBugs, which is no longer maintained [7]. The tool is

TABLE V: Generated alert keywords for each threat model rule in each cryptographic vulnerability detection tool (SpotBugs,
CRYPTOGUARD, CRYSL and Coverity). For example, for threat model 16 (i.e., Cryptographic Hash), the generated alert
keywords in tools are WEAK_MESSAGE_DIGEST, broken hash scheme, ConstraintError, RISKY_CRYPTO, respectively.

[Threat Model | SpotBugs [CryptoGuard [CrySL [Coverity
1 HARD_CODE_PASSWORD Constant keys RequiredPredicateError HARDCODED_CREDENTIALS
2 HARD_CODE_PASSWORD Constant keys NeverTypeOfError HARDCODED_CREDENTIALS
3 HARD_CODE_PASSWORD Predictable password NeverTypeOfError HARDCODED_CREDENTIALS
4 WEAK_HOSTNAME_VERIFIER Manually verify hostname — BAD_CERT_VERIFICATION
5 WEAK_TRUST_MANAGER Untrusted TrustManager - BAD_CERT_VERIFICATION
6 - Does not manually verify socket ConstraintError RESOURCE_LEAK
7 — HTTP protocol — —
8 PREDICTABLE_RANDOM Untrusted PRNG - —
9 — Predictable Seed TypeStateError PREDICTABLE_RANDOM_SEED
10 — Constant Salt RequiredPredicateError —
11 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
12 STATIC_IV Constant IV RequiredPredicateError —
13 — <1000 iteration ConstraintError —
14 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
15 — Export grade public key ConstraintError —
16 WEAK_MESSAGE_DIGEST Broken hash scheme ConstraintError RISKY_CRYPTO

built based on a plugin structure. The tools detect defects by
utilizing visitor pattern in class files or bytecodes of Java,
state machine, flags. We use the SpotBugs tool (version 3.1.0)
available online in SWAMP [25].

2) CRYPTOGUARD: CRYPTOGUARD [47] is a static anal-
ysis tool that is operated based on program slicing with
novel language-based refinement algorithms. It significantly
reduces the false positive rate which is a typical problem
for static analysis. Furthermore, CRYPTOGUARD covers 16
cryptographic rules and achieves high precision. The authors
showed screening a large number of Apache projects and
Android apps to present their high precision rate and low
false positive rate. We run the experiment on CRYPTOGUARD
(version 03.04.00) available on GitHub [5].

3) CrRYSL: CRYSL [35] is a definition language that is
implemented as a compiler, which interprets particular specifi-
cation to demand driven static analysis. For Java Cryptography
Architecture (JCA), CRYSL outlined rulesets that report vul-
nerabilities in code. CRYSL is open-sourced and we run the
experiment on CRYSL (version 2.0) available on GitHub [3].

4) Coverity: Coverity is a commercial tool that analyzes the
vulnerabilities of codes. Unlike other tools, it takes the source
code and performs its analysis. The Coverity analysis tool is
available to use online [4]. We perform the latest analysis using
Coverity on 29th March 2019.

V. CRYPTOAPI-BENCH EVALUATION AND ANALYSIS

In this section, we present and analyze our evaluation
results on four cryptographic misuse detection tools, i.e.,
SpotBugs, CRYPTOGUARD, CRYSL and Coverity. We show
the experimental setup, evaluation criteria and analysis results
using CRYPTOAPI-BENCH.

A. Experimental Setup

We evaluate mainly four cryptographic analysis tools, i.e.,
SpotBugs [13], CRYPTOGUARD [47], CRYSL [35], Cover-
ity [4] on CRYPTOAPI-BENCH. For SpotBugs, we perform
the analysis by uploading the CRYPTOAPI-BENCH’s JAR

file to the online SpotBugs tool (version 3.1.0) from Soft-
ware Assurance Marketplace (SWAMP) [25]. For CRYPTO-
GUARD, it is open-sourced and available in GitHub repos-
itory: https://github.com/CryptoGuardOSS/cryptoguard. We
perform the analysis of CRYPTOGUARD (version 03.04.00)!
on the CRYPTOAPI-BENCH’s JAR file. CRYSL is an-
other open-sourced tool that is available in GitHub reposi-
tory: https://github.com/CROSSINGTUD/CryptoAnalysis. For
CRYSL, the analysis also run on CRYPTOAPI-BENCH’s JAR
file with CrySL (version 2.0)>. We follow the instructions
from GitHub to set up the environment of CRYPTOGUARD
and CRYSL in our machine to perform the analysis. Coverity
is an online commercial tool [4] that takes GitHub link and
compressed code files of CRYPTOAPI-BENCH in order to start
analysis execution. The latest analysis run on Coverity was
performed on 29th March 2019.

We initially also consider two other tools, i.e., QARK [11]
and FixDroid [45]. QARK is open-sourced available in GitHub
repository: https://github.com/linkedin/qark. We set up the
environment of QARK? and analyze the source codes. For
FixDroid, we installed the FixDroid plugins [8] (version 1.2.1)
in Android Studio.

B. Evaluation Criteria

We evaluate the vulnerability detection tools by running
these tools on CRYPTOAPI-BENCH. After performing the
analysis, we capture true positive, false positive and false
negative rates from the corresponding tool’s result log. As our
purpose is to detect cryptographic vulnerability detection, we
consider only cryptographic misuse alerts and discard others.
In Table V, we present the alert keywords that detection
tools use while showing a specific cryptographic misuse.
For example, the last entry, i.e., threat model 16 (misuse
of the cryptographic hash function), is depicted in SpotBugs

ICommit id c046892.
2Commit id 5f531d1.
3Commit id balb265.

TABLE VI: CRYPTOAPI-BENCH comparison of SpotBugs, CRYPTOGUARD, CRYSL and Coverity on all 16 rules with
CRYPTOAPI-BENCH’s 171 test cases. There are 36 secure API use cases (13 in basic and 23 in advanced), which a tool
should not raise any alerts on. GTP stands for ground truth positive, which is the number of insecure API use cases in the

benchmark. Findings of the table are reported in Section V-C.

No. Threat Models GTP | SpotBugs | CryptoGuard CrySL Coverity
TP [FP [TP | FP TP [FP | TP | FP
1 Cryptographic Key 7 0 1 5 1 0 9 5 1
2 Password in PBE 8 2 0 6 1 0 9 7 1
3 Password in KeyStore 7 1 1 7 1 0 10 5 1
4 Hostname Verifier 1 1 0 1 0 - - 1 0
5 Certificate Validation 3 3 0 3 0 - - 3 0
6 SSL Socket 1 - - 1 0 1 0 1 0
7 HTTP Protocol 6 - - 6 1 - - - -
8 PRNG 1 1 0 1 0 - - - -
9 Seed in PRNG 14 - - 12 2 0 1 1 2
10 | Salt in PBE 7 - - 6 1 6 1 - -
11 Mode of Operation 6 1 2 6 1 5 1 1 1
12 Initialization Vector 8 7 2 7 1 8 0 - -
13 Iteration Count in PBE | 7 - - 5 1 5 2 - -
14 Symmetric Cipher 30 5 10 30 5 25 5 4 4
15 Asymmetric Ciphers 5 - - 4 1 5 1 - -
16 Cryptographic Hash 24 4 8 24 4 20 4 4 4
[Total [135 [25 [24 [124 [20 [75 [43] 32 [14 |

as “WEAK_MESSAGE_DIGEST”, CRYPTOGUARD as “Bro-
ken hash scheme”, CRYSL as “ConstraintError”, Coverity
as “RISKY_CRYPTO”. Table V can assist developers to
understand which keyword they should search in the result
log to find a specific type of vulnerability. In the following,
we provide a brief description of our process of identification
of true positive, false positive and false negative alerts.

1) True positive (TP): If a tool generates alert due to the
correct reason while screening any specific vulnerable unit test
case in CRYPTOAPI-BENCH, then the event is considered as
a true positive.

2) False positive (FP): The false positive alert can be
captured from two different scenarios. If an alert raised by
a tool is unexpected (i.e., does not exist in a specific unit test
case), then the alert is a false positive. In addition, if a tool
gives an inaccurate reason for an expected alert, then it is also
considered as a false positive.

3) False negative (FN): A vulnerable test case may not
be detected by the evaluation tools. This missed detection is
characterized as a false negative.

After analyzing the results by determining the true positive
(TP), false positive (FP) and false negative (FN) values, we
compute the false positive rate (FPR), false negative rate
(FNR), recall and precision to determine the performance of
the tools.

C. Analysis of Results

In this section, we describe CRYPTOAPI-BENCH evaluation
findings on each detection tool based on the result log and
performance analysis. Table VI presents the number of true
positive and false positive vulnerability threat detection cap-
tured by the tools for 16 cryptographic threat models. There
are only 6 common cryptographic threat models detected by all

tools. To ensure fairness in comparison, we consider only these
6 common cryptographic rules while finding the comparative
analysis results of tools based on the basic and advanced
benchmark in Table VII and Table VIII, respectively. The
analysis results are presented in terms of false positive rate
(FPR), false negative rate (FNR), recall and precision.
Analysis Overview: Table VI shows that among the 16 speci-
fied high impact cryptographic threat models in Section II, the
cryptographic vulnerability detection tools are able to detect a
subset of rules.

o SpotBugs, CRYPTOGUARD, CRYSL, Coverity covers 10,
16, 12, 10 cryptographic thread models, respectively.

e In total, the benchmark contains 136 vulnerable test
cases and among these true positive cases, SpotBugs,
CRYPTOGUARD, CRYSL, Coverity detects 25, 124, 75,
32 cases, respectively.

« In addition, SpotBugs, CRYPTOGUARD, CRYSL, Cover-
ity also generate 24, 20, 43, 14 false alarms, respectively
that are included as false positive cases.

We also initially consider QARK and FixDroid. QARK can
detect 18 true positive vulnerabilities in total covering both
basic and advanced cases covering 4 threat rules, i.e., symmet-
ric cipher, certificate validation, mode of operation and seed
in PRNG. QARK generates 4 false alarms in path sensitive
test cases of CRYPTOAPI-BENCH. FixDroid can detect 4 true
positive vulnerabilities in basic cases, i.e., insecure use of
symmetric cipher (DES only), mode of operation, iteration
count of PBE, and hostname verifier. FixDroid is not designed
to capture threats in advanced cases. Therefore, it produces 69
false alarms for 7 rules, i.e., symmetric ciphers, hostname veri-
fier, mode of operation, asymmetric cipher, cryptographic key,
iteration count, and salt in PBE. However, originally QARK
is designed to detect vulnerabilities in Android applications

and FixDroid is designed to use as a plugin. Therefore, due to
the limited detection capability of cryptographic misuses, we
exclude FixDroid and QARK from our comparison.

1) Analysis on Basic Benchmark: Table VII shows the per-
formance analysis result of four detection tools on six common
cryptographic threat models based on the basic benchmark. We
capture the following findings based on Table VII.

o SpotBugs does not produce any false positive errors. It
detects all cases except one. SpotBugs is not designed
to capture threats in the basic case of the vulnerable
cryptographic key threat model.

o« CRYPTOGUARD also does not produce any false positive
errors. It misses a detection in the vulnerable password
in PBE cases due to the orthogonal method invocation.

o CRYSL produces 6 false positive errors due to maintain-
ing strict rules in Crypto APIs of the cryptographic key,
password in PBE, password in KeyStore. These Crypto
APIs always raise an alert if type java.lang.String is used
as their passing argument whether the string is securely
generated or not.

o Coverity does not generate any false positive errors. It
can successfully detect every vulnerability except one.
Coverity is not designed to capture IDEA as a vulnerable
cryptographic algorithm. However, it can capture other
vulnerable cryptographic algorithms.

In summary, for all basic cases, SpotBugs, CRYPTOGUARD
and Coverity generates a precision of 100%. For CRYSL, it
produces some false positives and hence generates precision
of 62.50%.

2) Analysis on Advanced Benchmark: Table VIII shows
the performance analysis result of four detection tools on six
common cryptographic threat models based on the advanced
benchmark. We capture the following findings based on Ta-
ble VIIL

o In the prospect of path sensitivity, it is obvious that
none of the cryptographic vulnerability detection tools is
path-sensitive in their static analysis. SpotBugs, CRYP-
TOGUARD, CRYSL, Coverity generate 10, 13, 13, 12
false positive alerts, respectively. The possible reason
for the false positive alert is that for the concerned
variable, a container is defined to store all values of
the concerned variable. There is no ordered list which
shows the latest assignment. Therefore, alerts will be
raised if the container contains any vulnerable value that
is intended to be used in the Crypto APIL. A significant
reason for having a high false positive rate of 57.89%,
44.83%, 66.67%, 42.86%, respectively is because of the
tools being path insensitive.

¢ SpotBugs is not designed to capture vulnerability threat
in advanced cases. Therefore, it produces a huge 100%
false negative rate.

o SpotBugs produces 12 false positives for combined
cases. In combined cases, SpotBugs failed to de-
tect the source of vulnerability using both interpro-
cedural and field sensitive analysis. For example, in

Symmetric Cipher cases, instead of showing correct
“CIPHER_INTEGRITY” alert, it produces incorrect
“HARD_CODE_PASSWORD” alert.

e CRYPTOGUARD misses 3 vulnerabilities due to the or-
thogonal method invocation strategy [47]. These cases
contain specific built-in methods (e.g., String.valueOf(),
etc) that CRYPTOGUARD chooses not to process for
efficiency purposes.

e CRYSL produces incorrect ‘“RequiredPredicateError”,
“NeverTypeOfError” alerts for the cryptographic key,
password in PBE, password in KeyStore threat model
group test cases that contribute to generate a high false
positive rate of 66.67%. The reason is that the crypto-
graphic APIs used in these cases follow strict rules in
CRYSL and search for the type java.lang.String as their
passing argument. Therefore, if we use secure unpre-
dictable key String or password String as an argument
for crypto APIs, it generates incorrect alerts.

e CRYSL produced false positives in combined cases in
Version 1.0. Comparison result conducted on CRYSL
version 1.0 with a small number of cases of CRYPTOAPI-
BENCH can be found in [47]. They fixed most of the is-
sues of rising false positive alert in Version 2.0. However,
in Version 2.0, CRYSL does not show any true positives
alerts for combined cases.

o Coverity is not designed to detect vulnerable ciphers and
cryptographic hash functions in advanced cases. That
is the reason for having high false negative values and
generating high FNR in Coverity.

o Coverity shows correct results for cryptographic key,
password in PBE, password in KeyStore threat model
group test as “HARDCODED_CREDENTIALS” for in-
terprocedural, combined cases, multiple class cases. How-
ever, in miscellaneous cases and field sensitive cases,
Coverity produces 0 and 1 true positive alerts, respec-
tively. Coverity is a closed sourced detection tool. There-
fore, we are unable to confirm the reason for the incorrect
detection cases.

In summary, for all of the advanced cases, SpotBugs is
not designed to identify the advanced vulnerability threats
correctly. Therefore, the precision rate is 0%. CRYPTOGUARD
detects fairly well (missed only 3 cases) among all detection
tools with precision 83.33%. For CRYSL produce precision of
63.01%. Coverity generates a precision of 52.00%.

VI. DISCUSSION

Tool insights. Most of these tools (except CRYPTOGUARD)
do not cover all the vulnerabilities in our threat model (Ta-
ble VI). However, their methodologies can be extended to
cover most of these vulnerabilities. For example, the technique
that Coverity uses to detect constant cryptographic keys can be
transferred to detect predictable IVs or fewer iteration counts.

The main differences among different tools are within their
approach to trade-off among false positives, false negatives
and scalability. Our experimental evaluation reveals that all
of these tools produce a number of false positives and false

TABLE VII: CRYPTOAPI-BENCH comparison of SpotBugs, CRYPTOGUARD, CRYSL and Coverity on six common threat
model rules with CRYPTOAPI-BENCH’s common 20 basic cases. TP, FP, FN, FPR, FNR stand for true positive, false positive
and false negative, false positive rate, false negative rate, respectively. Findings of the table are reported in Section V-C1.

Rules g::::cs Vulnerable SpotBugs CryptoGuard CrySL Coverity
TP [FP [FN [TP [FP [FN [TP [FP [FN | TP [FP | FN
Cryptographic Key 1.1.1 Y 0 0 1 1 0 0 0 1 1 1 0 0
1.1.2 N 0 0 0 0 0 0 0 1 0 0 0 0
Password in PBE 2.1.1 Y 1 0 0 1 0 0 0 1 1 1 0 0
2.1.2 Y I 0 0 0 0 I 0 0 I 1 0 0
2.13 N 0 0 0 0 0 0 0 1 0 0 0 0
Password in KeyStore 3.1.1 Y 1 0 0 1 0 0 0 1 1 1 0 0
3.1.2 N 0 0 0 0 0 0 0 I 0 0 0 0
Mode of Operation 11.1.1 Y 1 0 0 1 0 0 1 0 0 1 0 0
I1.1.2 N 0 0 0 0 0 0 0 0 0 0 0 0
Symmetric Ciphers 14.1.1 Y 1 0 0 1 0 0 1 0 0 1 0 0
14.1.2 Y 1 0 0 1 0 0 1 0 0 1 0 0
14.1.3 Y I 0 0 1 0 0 I 0 0 1 0 0
14.14 Y 1 0 0 1 0 0 I 0 0 1 0 0
14.1.5 Y 1 0 0 1 0 0 1 0 0 0 0 1
14.1.6 N 0 0 0 0 0 0 0 0 0 0 0 0
Cryptographic Hash 16.1.1 Y 1 0 0 1 0 0 1 0 0 1 0 0
16.1.2 Y 1 0 0 1 0 0 I 0 0 1 0 0
16.1.3 Y 1 0 0 1 0 0 1 0 0 1 0 0
16.14 Y I 0 0 1 0 0 I 0 0 1 0 0
16.1.5 N 0 0 0 0 0 0 0 0 0 0 0 0
Result FPR (%) 0 0 50 0
FNR (%) 7.14 7.14 28.57 7.14
Recall (%) 92.86 92.86 71.43 92.86
Precision (%) 100.00 100.00 62.50 100.00

TABLE VIII: CRYPTOAPI-BENCH comparison of SpotBugs, CRYPTOGUARD, CRYSL and Coverity on six common threat
model rules with CRYPTOAPI-BENCH’s common 84 advanced cases. TP, FP, FN, FPR, FNR stand for true positive, false positive
and false negative, false positive rate, false negative rate, respectively. Findings of the table are reported in Section V-C2.

True True
Advanced Test Cases | Positive Negative SpotBugs CryptoGuard CrySL Coverity
Count Count
TP [FP [FN [TP [FP [FN [TP [FP [FN [TP [FP | FN
Two-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Three-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Field Sensitive 13 0 0 0 13 13 0 0 10 2 3 1 0 12
Combined Case 13 0 0 12 13 12 0 1 0 2 13 3 0 10
Path Sensitive 0 13 0 10 0 0 13 0 0 13 0 0 12 0
Miscellaneous Cases 3 3 0 0 3 3 0 0 0 6 3 0 0 3
Multiple Class methods 13 0 0 0 13 13 0 0 10 3 3 3 0 10
Results FPR (%) 57.89 44.83 66.67 42.86
FNR (%) 100 441 41.18 80.88
Recall (%) 0 95.59 58.82 19.12
Precision (%) 0.00 83.33 55.56 52.00

negatives. For CRYPTOGUARD, the main source of the false
negatives is the clipping of orthogonal method invocations.
The approach of orthogonal method invocation is introduced to
improve precision and scalability. The main focus of CRYSL
is to provide a language to specify a class of cryptographic
misuse vulnerabilities that can be detected using a generic
detection engine. A prime reason behind the false positives
is the strictness of the rule definitions that is inherited from
the language itself. For example, CRYSL raises an alert if
a cryptographic key is not generated using a key generator.
However, one can legitimately reuse a previously generated
key, which CRYSL would mistakenly detect as a vulnerability.
An impressive aspect of CRYSL is that it is constantly being

maintained and updated to improve its accuracy. The method-
ology of SpotBugs is inherently limited to detect advanced
cases as they use patterns to detect most of the vulnerabilities.

None of these tools are path-sensitive, i.e., all raising false
alerts in path sensitive cases. A possible reason for this
failure is that the existing path-sensitive analysis techniques
are usually costly, i.e., high runtime complexity.

Our limitation. CRYPTOAPI-BENCH cannot be used to
evaluate the scalability. All of our test cases are lightweight
by design. Our primary focus is to produce easily readable
test cases which demand minimal code to express complex
program properties.

Currently, our benchmark does not have any cases that

involve Java reflection APIs. The primary reason is that the
use of Java reflection during cryptographic coding is highly
unlikely. Consequently, none of the existing open-sourced
tools is designed to detect such cases. However, we plan to
include new cases that leverage Java reflection APIs to induce
cryptographic misuse vulnerabilities.

VII. RELATED WORK

Vulnerability detection benchmarks. AndroZoo++ [37]
is a collection of over eight million Android apps [2] that
drives a lot of security, software engineering and malware
analysis research. However, vulnerabilities in these apps are
not documented, hence not suitable for vulnerability detection
benchmarking purpose.

DroidBench [17], a benchmark containing vulnerable an-
droid apps, fills the gap by providing specific vulnerability
locations within the benchmark. Till date, DroidBench is one
of the most popular benchmark to evaluate the performance
of vulnerability detection tools in Android literature. In total,
DroidBench has 119 APKs from 13 categories *. Categories in-
clude vulnerabilities that use field and object sensitivity, inter-
app communication, inter-component communication, android
life-cycle, reflection, etc. However, DroidBench i) does not
cover cryptographic misuse vulnerabilities and ii) does not
have source code. To the best of our knowledge, Ghera [41]
is the only Android app benchmark that contains app source
code. Like DroidBench, most of the vulnerabilities in Ghera
are specific to Android apps and barely contains any crypto-
graphic misuse vulnerabilities. To be specific, CRYPTOAPI-
BENCH and Ghera have only 2 types of vulnerabilities in
common.

OWASP Benchmark [24] is fundamentally designed to
capture eleven cybersecurity vulnerabilities. However, among
the detected vulnerabilities, it builds to address only three Java
cryptographic vulnerabilities, i.e., weak encryption algorithm,
weak hash algorithm, and a weak random number.

SonarSource [12] released a set of vulnerability samples that
can be useful to check for coverage of vulnerability categories.
However, these straightforward samples cannot be used to
determine the scientific rigor of a tool.

Other benchmarks. The DaCapo benchmarks [22] are
designed to evaluate the performance of various components
of Java virtual machine (JVM), Garbage collection (GC), Just-
in-time (JIT) compiler itself. BugBench [38] is a benchmark to
find C/C++ bugs that contains 17 real-world applications. Bug-
Bench mostly covers various memory, concurrency and seman-
tic bugs. To detect bugs in the multi-threaded Java programs,
a benchmark and framework has been proposed [27,31]. For
dynamic software updating system, a standardized benchmark
system proposed to check the system’s practicality, flexibility,
and usability [49]. ManyBugs and IntroClass benchmarks de-
signed to evaluate various C/C++ code repair techniques [36].
Most of the defects in ManyBugs and IntroClass do not impact
security, e.g., in the ManyBugs benchmark, more than half of
the instances impact correctness, not necessary security.

4Commit id 0fe281b.

VIII. CONCLUSION AND FUTURE WORK

We believe that for scientific, in-depth and repro-
ducible comparisons benchmark is an important compo-
nent. In this paper, we present the first benchmark, named
CRYPTOAPI-BENCH to evaluate the detection accuracy
and security guarantees of various cryptographic misuse
detection tools. Our benchmark is open-sourced and is
available at: https://github.com/CryptoAPI-Bench/CryptoAPI-
Bench. We evaluated four static analysis tools that are capable
of detecting cryptographic misuses. Our evaluation revealed
some interesting insights, i.e., i) tools that are specialized
to detect cryptographic misuses (e.g., CryptoGuard, CrySL)
cover more rules and higher recall than general purpose tools
(e.g., SpotBugs, Coverity), ii) none of the existing tools is
path-sensitive.

We are actively working on expanding CRYPTOAPI-BENCH
by adding new rules, test cases and covering new crypto-
graphic APIs. In future, we plan to achieve following goals.

o To test the scalability of the tools, our ongoing work is
to extend the existing CRYPTOAPI-BENCH by integrating
Apache benchmark that can be extrapolated to applica-
tions on real-world code.

o To motivate the research of cryptographic misuse de-
tection tools for other platforms, we plan to extend
CRYPTOAPI-BENCH to cover other popular languages,
e.g., Python.

o Other non-cryptographic API misuses (e.g., Android APIs
to access sensitive information (location, IMEI, pass-
words, etc.) [23,44], fingerprint protection [21], cloud
service APIs for information storage [51]) are also proven
to cause catastrophic security consequences. We also plan
to include the misuses of these critical non-cryptographic
APIs.

IX. ACKNOWLEDGEMENT

This work has been supported by the Office of Naval
Research under Grant ONR-N00014-17-1-2498.

REFERENCES

[1] AES Encryption. https://aesencryption.net/. Online; Last accessed: April
3, 2019.

[2] AndroZoo. https://androzoo.uni.lu/. Online; Last accessed: April 3,
2019.

[3] Cognicrypt_SAST: CrySLtoStatic Analysis Compiler.
https://github.com/CROSSINGTUD/CryptoAnalysis. Online; Last
accessed: April 3, 2019.

[4] Coverity Static Application Security Testing (SAST).

https://www.synopsys.com/software-integrity/security-testing/static-
analysis-sast.html. Online; Last accessed: April 1, 2019.

[5] CryptoGuard. https://github.com/CryptoGuardOSS/cryptoguard. Online;
Last accessed: April 3, 2019.

[6] Find Security Bugs. https:/find-sec-bugs.github.io/.
accessed: April 3, 2019.

[7]1 FindBugs is now SpotBugs. https://github.com/findbugsproject/findbugs.
Online; Last accessed: April 1, 2019.

[8] FixDroid. https://plugins.jetbrains.com/plugin/9497-fixdroid. ~Online;
Last accessed: April 1, 2019.

[9] GRAMMATECH. https://www.grammatech.com/. Online; Last ac-
cessed: April 1, 2019.

Online; Last

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Hostname Verification to SSL Socket.
https://www.thecodingforums.com/threads/adding-hostname-
verification-to-sslsocket.958287/. Online; Last accessed: April 3,
2019.

Quick Android Review Kit (QARK). https:/github.com/linkedin/qark.
Online; Last accessed: April 1, 2019.

SonarSource, making Code Analyzers. https://rules.sonarsource.com/.
Online; Last accessed: April 3, 2019.
SpotBugs: Find Bugs in Java Programs.
Online; Last accessed: April 3, 2019.
URL Spoofing. http://www.securitysupervisor.com/security-q-
a/network-security/262-what-is-url-spoofing. ~ Online; Last accessed:
April 3, 2019.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky. Comparing the Usability of Cryptographic APIs. In IEEE
Symposium on Security and Privacy, SP’17, San Jose, CA, USA, May
22-26, pages 154-171, 2017.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
You Get Where You're Looking for: The Impact of Information Sources
on Code Security. In IEEE Symposium on Security and Privacy, SP’16,
San Jose, CA, USA, May 23-25, pages 289-305, 2016.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-Sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI’14, pages 259-269, 2014.

K. Ashcraft and D. R. Engler. Using Programmer-Written Compiler
Extensions to Catch Security Holes. In IEEE Symposium on Security
and Privacy, (SP’02), Berkeley, California, USA, May 12-15, pages 143—
159, 2002.

H. Assal and S. Chiasson. Security in the Software Development
Lifecycle. In Fourteenth Symposium on Usable Privacy and Security,
SOUPS’18, Baltimore, MD, USA, August 12-14, pages 281-296, 2018.
C. A. Barton, G. A. Clarke, and S. Crowe. Transferring Data via a
Secure Network Connection, 2006. US Patent 7,093,121.

A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H.
Chung, and W. Lee. Broken Fingers: On the Usage of the Fingerprint
API in Android. In 25th Annual Network and Distributed System
Security Symposium, NDSS’18, San Diego, California, USA, February
18-21, 2018.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo Benchmarks: Java Benchmarking Development and Anal-
ysis. In Proceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA’06, Portland, Oregon, USA, October 22-26, pages 169-190,
2006.

A. Bosu, F. Liu, D. Yao, and G. Wang. Collusive Data Leak and
More: Large-Scale Threat Analysis of Inter-app Communications. In
ACM ASIA Conference on Computer and Communications Security,
AsiaCCS’17, pages 71-85, 2017.

E. Burato, P. Ferrara, and F. Spoto. Security Analysis of the OWASP
Benchmark with Julia. The Italian Conference on CyberSecurity
(ITASEC), 17, 2017.

Welcome to the SWAMP. https://continuousassurance.org, 2018.

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An Empirical
Study of Cryptographic Misuse in Android Applications. In ACM
Conference on Computer and Communications Security, CCS’13, pages
73-84, 2013.

Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a Framework
and a Benchmark for Testing Tools for Multi-Threaded Programs.
Concurrency and Computation: Practice and Experience, 19(3):267—
279, 2007.

S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgirtner, and
B. Freisleben. Why Eve and Mallory Love Android: An Analysis of
Android SSL (in) Security. In the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, pages 50-61, 2012.

F. Gagnon, M. Ferland, M. Fortier, S. Desloges, J. Ouellet, and
C. Boileau. AndroSSL: A Platform to Test Android Applications
Connection Security. In International Symposium on Foundations and
Practice of Security, FPS’15, pages 294-302, 2015.

https://spotbugs.github.io/.

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The Most Dangerous Code in the World: Validating
SSL Certificates in Non-Browser Software. In the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, pages 38—49, 2012.

K. Havelund, S. D. Stoller, and S. Ur. Benchmark and Framework
for Encouraging Research on Multi-Threaded Testing Tools. In Pro-
ceedings International Parallel and Distributed Processing Symposium,
IPDPS’03, page 286. IEEE, 2003.

C. Herley and P. C. van Oorschot. SoK: Science, Security and the
Elusive Goal of Security as a Scientific Pursuit. In IEEE Symposium
on Security and Privacy, SP’17, San Jose, CA, USA, May 22-26, pages
99-120, 2017.

D. E. Knuth. Art of Computer Programming, volume 2: Seminumerical
Algorithms. Addison-Wesley Professional, 2014.

S. Kriiger et al. CogniCrypt: Supporting Developers in using Cryptog-
raphy. In IEEE/ACM International Conference on Automated Software
Engineering, ASE’17, pages 931-936, 2017.

S. Kiriiger, J. Spith, K. Ali, E. Bodden, and M. Mezini. CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs. In European Conference on Object-Oriented Programming,
ECOOP’18, pages 10:1-10:27, 2018.

C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer. The ManyBugs and IntroClass Benchmarks
for Automated Repair of C Programs. IEEE Transactions on Software
Engineering, 41(12):1236-1256, 2015.

L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein,
and Y. L. Traon. AndroZoo++: Collecting Millions of Android Apps
and Their Metadata for the Research Community. arXiv preprint
arXiv:1709.05281, 2017.

S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. BugBench:
Benchmarks for Evaluating Bug Detection Tools. In Workshop on the
Evaluation of Software Defect Detection Tools, volume 5, 2005.

A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna. DR. CHECKER: A Soundy Analysis for Linux Kernel
Drivers. In 26th USENIX Security Symposium, USENIX Security’l7,
Vancouver, BC, Canada, August 16-18, 2017, pages 1007-1024, 2017.
N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty. Secure Coding
Practices in Java: Challenges and Vulnerabilities. In International
Conference on Software Engineering, ICSE’18, Gothenburg, Sweden,
May 2018.

J. Mitra and V. Ranganath. Ghera: A Repository of Android App
Vulnerability Benchmarks. In Proceedings of the 13th International
Conference on Predictive Models and Data Analytics in Software
Engineering, PROMISE’17, Toronto, Canada, November 8, 2017, pages
43-52, 2017.

K. Moriarty, B. Kaliski, and A. Rusch. PKCS #5: Password-Based
Cryptography Specification Version 2.1. 2017.

S. Nadi, S. Kriiger, M. Mezini, and E. Bodden. Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?
In International Conference on Software Engineering, ICSE’16, pages
935-946, 2016.

Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang. Finding
Clues for Your Secrets: Semantics-Driven, Learning-Based Privacy
Discovery in Mobile Apps. In 25th Annual Network and Distributed
System Security Symposium, NDSS’1S8, San Diego, California, USA,
February 18-21, 2018.

D. C. Nguyen et al. A Stitch in Time: Supporting Android Developers
in Writing Secure Code. In ACM Conference on Computer and
Communications Security, CCS’17, pages 1065-1077, 2017.

M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes. The Rise of the Citizen
Developer: Assessing the Security Impact of Online App Generators.
In IEEE Symposium on Security and Privacy, SP’18, San Francisco,
California, USA, 21-23 May, pages 634—-647, 2018.

S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. Yao. CryptoGuard: High Precision Detection
of Cryptographic Vulnerabilities in Massive-sized Java Projects. In
ACM Conference on Computer and communications security, CCS’19,
London, UK, Nov. 2019.

S. Rahaman and D. Yao. Program Analysis of Cryptographic Implemen-
tations for Security. In IEEE Cybersecurity Development, SecDev’17,
Cambridge, MA, USA, September 24-26, pages 61-68, 2017.

[49]

[50]

[51]

E. K. Smith, M. Hicks, and J. S. Foster. Towards Standardized Bench-
marks for Dynamic Software Updating Systems. In 4th International
Workshop on Hot Topics in Software Upgrades (HotSWUp’12), pages
11-15. IEEE, 2012.

D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan. SMV-
Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps. In The Network and Distributed
System Security Symposium, NDSS’14, 2014.

C. Zuo, Z. Lin, and Y. Zhang. Why Does Your Data Leak? Uncovering
the Data Leakage in Cloud from Mobile Apps. In IEEE Symposium on
Security and Privacy, (SP’19), London, UK, 2019.

