
Optimization to the Rescue: Evading Binary Code Stylometry
with Adversarial Use of Code Optimizations

Ben Jacobsen
bjacobsen@email.arizona.edu

University of Arizona
Tucson, Arizona, USA

Sazzadur Rahaman
sazz@cs.arizona.edu
University of Arizona
Tucson, Arizona, USA

Saumya Debray
debray@cs.arizona.edu
University of Arizona
Tucson, Arizona, USA

ABSTRACT

Recent work suggests that it may be possible to determine the

author of a binary program simply by analyzing stylistic features

preserved within it. As this poses a threat to the privacy of program-

mers who wish to distribute their work anonymously, we consider

steps that can be taken to mislead such analysis. We begin by ex-

ploring the effect of compiler optimizations on the features used for

stylistic analysis. Building on these findings, we propose a gray-box

attack on a state-of-the-art classifier using compiler optimizations.

Finally, we discuss our results, as well as implications for the field

of binary stylometry.

CCS CONCEPTS

· Security and privacy→ Privacy protections; · General and

reference → Empirical studies; Experimentation; · Software and

its engineering→ Compilers; · Computing methodologies→

Machine learning; · Social and professional topics→ Surveil-

lance.

KEYWORDS

Privacy; Adversarial Machine Learning; Stylometry; Bayesian Opti-

mization

ACM Reference Format:

Ben Jacobsen, Sazzadur Rahaman, and Saumya Debray. 2021. Optimization

to the Rescue: Evading Binary Code Stylometry with Adversarial Use of

Code Optimizations. In Proceedings of the 2021 Research on offensive and

defensive techniques in the Context of Man At The End (MATE) Attacks

(Checkmate ’21), November 19, 2021, Virtual Event, Republic of Korea. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3465413.3488574

1 INTRODUCTION

The analysis of individual stylistic characteristics has been used to

infer the authorship of natural-language texts [18, 25, 33]. The

idea has also been applied to software, focusing on the analy-

sis of stylistic clues in software to identify its possible authors

[1, 4, 9, 10, 20, 21, 32, 36, 41, 46, 50]. Software, unlike natural-

language prose, has characteristics that can make stylistic analysis

challenging: for example, it can be written by multiple authors or

incorporate code snippets obtained from sites like StackOverflow.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8552-7/21/11.
https://doi.org/10.1145/3465413.3488574

There are tools that automatically standardize features, like inden-

tation, which might otherwise carry stylistic information. Many

researchers have proposed strategies for dealing with each of these

issues, but for the most part they remain challenging open problems

for the field [26]. Nonetheless, in controlled settings, researchers

working with raw source code have attained accuracy of more than

95% when discriminating between over 200 authors [10]. Recent

work suggests that stylistic features may also survive compilation,

allowing the author to be identified from binaries [9]. However,

most prior work on this topic has typically considered only a few

łstandardž optimization flags. It therefore remains an open question

whether stylometric analysis is robust in the face of the full array

of optimizations made available by modern compilers.

Note that while it is obvious that in, general, compiler optimiza-

tions can profoundly alter many of the low-level characteristics of

compiled code, it is not a priori obvious that such optimizations

can sufficiently erase all of the stylistic features characteristic of an

individual programmer for a particular program (see Section 3.4).

This makes it hypothetically possible that enough stylistic clues

might survive the optimization process to allow that program’s

author to be identified.

While code stylometry can be a useful tool in some circum-

stances, e.g., for resolving copyright disputes or identifyingmalware

authors, it also poses an undeniable privacy threat. There are many

legitimate reasons for a programmer to wish to distribute their

code anonymously. For example, programmers who write software

tools to circumvent the surveillance or censorship of repressive

governments, help activists track legislation and organize protests,

or help members of oppressed minorities, might all have reason

to fear discrimination or harassment should their involvement in

such projects become public knowledge.

This paper aims to address this privacy challenge, focusing on

compiled binaries, which are commonly used to distribute software.

We reject the use of code obfuscation tools, since these can make

maintenance problematicÐand, more importantly from the per-

spective of a privacy-conscious developer, can potentially embed

identifying markers into the obfuscated code in ways that may

not be easy to detect (e.g., see [14]). Instead, we focus on leverag-

ing conventional compiler optimizations to erase stylistic clues in

compiled binaries. Importantly, our approach is usable by ordinary

privacy-conscious programmers who need not be familiar with

sophisticated machine learning concepts or tools based on such

concepts [42]. Our approach is based on Bayesian optimization, but

it is used only to recommend optimization flags to the program-

mer. The programmer can then research the recommended flags

to understand what the optimizations do, apply them and examine

the resulting binaries to determine their effect, and possibly adapt

https://doi.org/10.1145/3465413.3488574
https://doi.org/10.1145/3465413.3488574

them in ways she prefers. This has two important advantages: (1) it

is easily integrated into conventional software development prac-

tices; and (2) it provides transparency and does not demand any

additional trust from the programmer on any łmagicž software (e.g.,

obfuscators or anti-stylometry tools).

This paper makes the folowing contributions:

(1) We demonstrate experimentally that carefully chosen com-

piler optimizations can significantly alter the stylometric

characteristics of compiled binaries and impact the accuracy

of binary code stylometry. This indicates limits to the scope

of earlier work on binary-level stylometry when applied to

optimized binaries [9].

(2) We propose a method that is usable by ordinary program-

mers, using ordinary software development practices, to

systematically evade binary-level stylometry.

(3) Experimental evaluation, based on a state-of-the-art open

source binary stylometry system [9], shows that, our method

can cause a significant drop (%) in stylometric accuracy.

2 BACKGROUND

2.1 Code Stylometry

Code stylometry is the process of using the stylistic features of a

program to determine who wrote it [36, 41, 50]. This is typically

modeled as a supervised machine learning problem [1, 4, 9, 10, 20,

21, 32, 46].

A researcher begins by assembling a training dataset consisting

of many programs, all of which have known authorship. From each

program, the researcher extracts features which succinctly describe

it. These might be lexical features (such as indentation style or

function names), syntactic features (such as a preference for certain

data structures or tendency to write longer or shorter functions),

or semantic features (such as the actual algorithms implemented,

or the overall flow of control) [26]. In whatever combination, these

features are paired with a label indicating the author of the program

and fed to some variety of machine learning algorithm, which learns

how to discriminate between the different authors in the data. The

final result is a model, which can be used to predict the author of

new programs.

2.2 Compiler Optimization

Compiler optimizations aim to improve binary-level code metrics

while preserving observable behavior. The code metrics most com-

monly used are execution speed and code size, though researchers

have also considered energy usage [27, 38] and (in smart contracts)

monetary cost [3, 13]. Not surprisingly, optimizations focus on pro-

gram constructs that most impact the metric under consideration.

Thus, optimizations aimed at improving execution speed typically

focus on loops (e.g., loop unrolling, loop fusion, code motion out of

loops, loop vectorization), memory accesses (register allocation),

removal of redundant or unnecessary code (constant folding, dead

code elimination, common subexpression elimination), etc. [2]. Op-

timizations aimed at improving code size focus on reducing code

replication, e.g., via procedural abstraction [16].

2.3 Adversarial Machine Learning

Machine learning techniques generally operate by studying a large

amount of data drawn from some statistical distribution, and learn-

ing to recognize patterns within that data which help it solve some

task at hand (say, distinguishing spam from legitimate email). Once

these patterns have been learned, they can be used to classify new

inputs drawn from the same distribution.

Attacking these models generally boils down to violating the

assumption that the inputs to the model are drawn from the same

distribution as the training data. This might involve tampering

with the training data (data poisoning [35]), or carefully crafting

inputs that fool the classifier (called adversarial examples[12, 52]).

In both cases, the goal is to cause the classifier to behave incorrectly

in certain cases, for example by allowing spam into a recipient’s

inbox. Despite the success of machine learning in other domains,

many commonmachine learning techniques have been shown to be

extremely vulnerable to these sorts of attacks, and devisingmethods

for more robust learning remains a major open problem [5, 7, 53, 54].

In categorizing different types of attacks, one important variable

is the extent of the attacker’s knowledge of the system they are tar-

geting. At one extreme, the attacker is assumed to know everything

Ð the data used, the features extracted, the type of classifier, and so

on. This model, which is generally called white-box [51], represents

a worst-case scenario for the defender. At the other extreme, the

attacker knows only high-level information about what a classifier

is supposed to do, and the only way they can learn about its inner

workings is by feeding it inputs and seeing what it does. This model

is appropriately called black-box [15, 39]. In this paper, we adopt a

gray-box approach for our own attack model, which we explain in

Section 5.

2.4 Bayesian Optimization

Bayesian optimization is a technique for black-box global optimiza-

tion. That is, if we are allowed to query a function repeatedly, but

otherwise have no access to its inner workings, Bayesian optimiza-

tion can be used to search effectively for the input which maximizes

(or minimizes) the output. In our case, we use it to find the max-

imum of the function łGiven some set of compiler optimizations,

return the accuracy of the target model when classifying a binary

compiled with those optimizations."

For a more technical description of Bayesian optimization, the

reader is referred to Peter Frazier’s excellent tutorial [22]. This is

the high level concept:

At each stage of the algorithm, we have access to a record of all

of our previous queries. Using these inputs and outputs, we use

statistical inference to create a model of what we think our objective

function looks like. The core assumption here is that points that

are close to those we have already queried are likely to have similar

outputs, and we can be more certain about the output we would get

at a point the closer it is to points that we have already checked.

From here, we need to decide the next point to query. In order

to leverage our earlier queries, we want to focus on points near the

highest-value points we have found. But simultaneously, because

we want to find the global optimum, we also want to look at points

where we are very uncertain what we might get. To balance these

competing goals, we define an acquisition function over our domain

which gives a certain weight to each priority, and choose our next

point by finding the maximum of this acquisition function. The

acquisition function is chosen so that it is easy to find the true,

global maximum in a short amount of time.

Finally, once we find the point that maximizes our acquisition

function, we query our objective function there, record the result,

and update our data. This process can be repeated as often as desired,

or until some computational budget is exceeded.

Bayesian optimization excels when querying our objective func-

tion is very expensive. In this situation, it’s worthwhile to take the

time to construct a surrogate model and optimize an acquisition

function over it. Choosing our next point in such a careful manner

lets us cut down on the total number of queries we need to make,

saving time and resources.

The greatest difficulty with Bayesian optimization is in scaling to

higher dimensions [22]. Intuitively, in high-dimensional spaces, ev-

erything is far away from everything else (a phenomenon poetically

called the Curse of Dimensionality). So, even after many queries, we

still might be very uncertain of the value of our objective function

for most inputs.

2.4.1 REMBO. REMBO is an extention of Bayesian optimization

proposed by Wang et al. [55]. In many real-world situations, a

problem can appear to be very high-dimensional, when in fact its

intrinsic dimensionality is quite small. That is, it may be the case

that only a few of the dimensions affect the objective function

significantly. For example, the hyperparameters of neural networks

have been found to have this property [6].

The key insight of Wang et al. is that it is possible to take advan-

tage of this structure when optimizing such a function, even when

we do not know exactly which of the hyperparemeters are actually

relevant. Thus, as long as we know that the intrinsic dimensionality

of a function is small (say, 10), we can find its optimum almost as

easily as we could a normal 10-dimensional function, even if we do

not know which 10 dimensions matter.

An example is useful to illustrate this surprising fact. Suppose

we want to find the optimum of a function with two parameters,

𝑓 (𝑥,𝑦). We suspect that only one of these parameters matter, but

we do not know which one. One solution is to simply look for

optimums on the line 𝑥 = 𝑦. This reduces the space we have to

search from 2 dimensions to 1, and our space is still guaranteed

to contain the optimal value regardless of whether 𝑥 or 𝑦 is the

important dimension.

What if all the variation in our objective function lies in a 1-

dimensional subspace that isn’t aligned to either 𝑥 or 𝑦? Then we

can simply choose a line to optimize along at random, and we will

only fail to find our optimum if the line we choose just happens to

be exactly perpendicular to the true 1-dimensional subspace, which

happens with probability 0.

This same reasoning can be extended to higher dimensions. The

upshot is that we can use Bayesian optimization for very high

dimensional functions as long as there is compelling reason to

believe that the intrinsic dimensionality is small. In section 3, we

study the impact of different compiler optimizations on binary

stylometry, and conclude that it appears to fit this pattern.

3 DESIGN INTUITIONS

Before diving into the details of our work, in this section we present

our intuitions behind leveraging compiler optimizations to build a

framework to evade binary code stylometry. Specifically, we discuss

how compiler optimizations affect binary-level code characteristics

and how this can impact binary-level code stylometry. This can

help us to provide a context to generalizations about binary-level

stylometry of optimized code that are sometimes encountered in

the research literature. Figure 1 shows the effects of some common

compiler optimizations successively applied to a small example C

program, shown in Figure 1(𝑎).1 Function inlining pulls the body of

the function f() into the caller function (Figure 1(𝑏)). This causes

the iteration count of the for-loop to become known, allowing it to

be unrolled (Figure 1(𝑐)). Finally, constant folding on the unrolled

loop allows the conditionals to be optimized away and results in the

code shown in Figure 1(𝑑). In this example, a similar effect could

have been obtained using interprocedural constant propagation [11]

instead of function inlining. This example illustrates the following

key observations.

3.1 Optimizations affect core features

The characteristics of an optimized program can be very different

from both the source code it was obtained from as well as those of

the same program compiled with a different set of optimizations. For

example, function inlining can significantly change the structure

and size of function bodies, as shown in Figure 1(𝑏); loop unrolling

can replace loops with longer loop-free instruction sequences, as

shown in Figure 1(𝑐); and constant folding can get rid of conditional

branches, as shown in Figure 1(𝑑).

It follows from this that source-level code features such as loop

structure or function size, which may be useful for source-level

stylometry, may not survive optimization unscathed. For example,

the loop and conditional in the original source code shown in Figure

1(𝑎) are completely eliminated in the optimized code shown in

Figure 1(𝑑). A corollary is that for stylometry purposes, source-

level code features such as function size or loop structure, extracted

from optimized binaries that have been decompiled using tools

such as Hex-Rays or Ghidra, may not correspond meaningfully to

the original source code.

3.2 Impact of code structure on optimization

The impact of any given optimizing transformation is dependent on

the characteristics of the code being optimized. For example, loop

unrolling will not have any effect on a program that does not have

any unrollable loops, and function inlining will not significantly

impact programs with few inlinable functions.

It follows from this that when we consider the efficacy of binary-

level code stylometry on optimized code, it is important to take into

account both the kinds of optimizations being applied and also the

characteristics of the code those optimizations are being applied

to. There are two corollaries: first, inferences about the efficacy

1For ease of understanding the results of various optimization steps are shown in the
form of C source code, although in reality the compiler would use an intermediate
representation, such as three-address code organized into a control flow graph, to
which the optimizations would be applied [2].

void f(int m, int k)

{

for (; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

f(n, 3);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

for (k = 3; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

int k = 3;

if (k % 2 == 0) /* iter 1 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 2 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 3 */

m += 2*k;

else

m -= 1;

k--;

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

m -= 1; /* iter 1 */

m += 4; /* iter 2 */

m -= 1; /* iter 3 */

printf("%d\n", m);

return 0;

}

(𝑎) Original program (𝑏) After function inlining (𝑐) After loop unrolling (𝑑) After constant folding and

dead code elimination

Figure 1: An example of the effect of compiler optimizations

of binary code stylometry based on a particular set of optimiza-

tions on a particular set of programs may or may not generalize

to a different set of optimizations applied to a different set of pro-

grams; and second, optimizations tailored to the characteristics of

a particular program can have a significantly greater impact on the

characteristics of the optimized code than a generic set of optimiza-

tions that may or may not be relevant to the code characteristics of

that program [45].

3.3 Interactions between optimizations

Compiler optimizations may not be independent of each other. This

is illustrated in Figure 1, where constant propagation to eliminate

the if-statement in the loop was made possible due to the prior

application of loop unrolling, which in turn was enabled due to the

loop iteration count becoming known via function inlining. Ren et

al. observe that optimizations may also sometimes influence each

other negatively [45].

3.4 Optimization and stylometry

As noted in Section 3.1, compiler optimizations can profoundly

alter the features in the optimized code. However, this does not, in

itself, imply that optimization can necessarily render binary-level

stylometry ineffective. There are two reasons for this:

(1) As discussed in Section 3.2, the impact of an optimization is

dependent on the structure of the code it is applied to. Thus,

even if an optimization is very effective in altering low-level

code features in general, the characteristics of a particular

program may render that optimization ineffective for that

program.

(2) Stylometric analyses rely on statistical analyses of multiple

stylistic features to attribute authorship. Even if we assume

that compiler optimizations can erase many of the stylistic

features characteristic of a particular programmer, it is by

no means obvious that they will be able to erase all such

characteristic stylistic features from a particular program. In

other words, it is possible that, for that particular program,

enough stylistic features may survive optimization to allow

authorship attribution.

3.5 The difficulty of provenance analysis

Compiler provenance refers to the problem of determining the exact

compiler and optimizations used to create a particular binary. This

involves identifying the family of compiler (e.g. GCC vs. Clang), the

version used (e.g. GCC 3.4.x vs. GCC 4.4.x), and the optimizations

employed (e.g. O0 vs. O2). Recent work in this area has produced

tools which are capable of determining the difference between

optimized and unoptimized binaries with high accuracy [43, 47].

However, compilers like GCC are capable of performing on the order

of 200 independent optimizations, and no work has come remotely

close to being able to distinguish between the corresponding ∼ 2200

possible combinations.

This poses a difficulty for binary stylometry. Recall that clas-

sifiers generally must be trained on data drawn from the same

distribution that they will eventually be employed on. Thus, to

avoid accidentally classifying particular compilers or optimizations

instead of authors, it is important to use a classifier trained on pro-

grams compiled under the same conditions as the program being

studied. This may be feasible when that program has been compiled

with very standard options, such as O0 and O2, but is currently

impossible to guarantee in general.

4 PRELIMINARY EXPLORATION

In this section, we present preliminary experiments that we per-

formed to assess the feasibility of our basic method. Binary sty-

lometry relies on extracting certain informative features from a

given binary. Our guiding research question was łdo different com-

piler optimizations meaningfully influence the distribution of these

features?ž An affirmative answer to this question is a necessary con-

dition to use compiler optimizations for obscuring stylistic features

and protecting programmer privacy.

4.1 Google Code Jam Dataset

In all of our experiments, we used data from the Google Code Jam

(GCJ), which is a popular international coding competition hosted

by Google. This dataset is standard in much of the literature around

program stylometry, e.g. [4, 9, 10] because it is one of the few large

corpuses of programs that:

(1) Are known to be written by specific, single authors

(2) Do not contain 3rd party or copy-pasted code

(3) Are attempting to perform the same task

These features make it in some sense ideal for analyzing pro-

gramming style. Specifically, our dataset consists of 200 authors

who participated in the 2017 GCJ. Then, for each author, our dataset

contains their submissions to 8 of the problems from the coding

competition. This data was originally collected by Quiring et al. [42],

who made it publicly available. All submissions were confirmed to

be correct.

4.2 Impact of optimization on core features

While it is clear that different choices of optimizations can lead to

different binaries being produced, it is not immediately obvious

to what extent these differences might interfere with stylometry.

In particular, it is conceivable that the features which carry the

most stylistic information might be particularly resilient to being

manipulated through optimization.

To investigate this possibility, we decided to focus on the dis-

tribution of opcode ngram frequencies, as this was reported by

Caliskan et al. [9] as being one of the most informative sources for

stylistic features. We compiled the 2017 Google Code Jam dataset

with eleven different optimization flags, chosen to cover the range

of common optimizations while also including architecture-specific

optimizations. We then disassembled each of the resulting binaries

using objdump and extracted the frequency of each opcode 2-gram

in the disassembly.2 Finally, we used scikit-learn [40] to extract

the 50 2-grams most useful for stylometry, using information gain.

The five most informative 2-grams are provided in Table 1 for il-

lustrative purposes. We then studied the extent to which these

frequencies were perturbed by optimization, using the measure of

cosine distance.

2The use of 𝑛-grams with 𝑛 = 2 in this example is intended only to illustrate the
impact of compiler optimizations on binary-level code features; our experiments with
other values of 𝑛 show qualitatively similar results. We note that 2-grams play an
important role in the binary-level stylometric analysis of Caliskan et al. [9].

Opcode 2-gram

1 mov mov

2 mov call

3 endbr64 push

4 call mov

5 lea mov

Table 1: The 5 opcode 2-grams which carry themost stylistic

information

Figure 2: Distribution of the cosine distance between opti-

mized and unoptimized versions of the same program, con-

sidering only the 50 most informative opcode ngrams.

Cosine distance is a measure of the similarity of two vectors,

defined to be 1−cos𝜃 , where 𝜃 is the angle between the two vectors.

When used on vectors whose components are all non-negative

(such as vectors of frequencies), this value always lies between 0

and 1. A distance of 0 indicates that the two vectors have the same

orientation, and differ only in length, if at all. Conversely, a distance

of 1 indicates that the two vectors are orthogonal. In the context

of frequency vectors, this would imply that the any feature which

appears in one observation is absent in the other, and visa versa.

Because cosine distance measures angle and not magnitude, it is

particularly useful for comparing vectors that can vary considerably

in size. We might, for example, expect two programs written by

the same author to have similar distributions of opcode ngrams.

However, if one program is larger than the other, then the raw

numbers may be very different. The cosine distance between these

two programs would be quite small, whereas it might be quite large

for a metric like Euclidean distance.

Using cosine distance, we can measure the size of the pertur-

bation caused by compiling a program with a certain level of op-

timization. Using kernel density estimation, we then estimate the

probability distribution of distances between binaries optimized

with a certain flag and their unoptimized counterparts. Our results,

showing the calculated distributions for three different levels of

optimization, are presented in Figure 2.

From this figure, we can see that all three levels of optimization

led to similar distributions of distances. These distributions turn out

to be very right-skewed, with a median cosine distance of roughly

0.16 at all three levels of optimization tested. Concretely, the figure

tells us that almost all programs were perturbed to some degree,

and typically the perturbation was moderate in size. However, some

programs showed extreme variation. Full data from this experiment

is available at https://github.com/skdebray/Stylometry. On

the basis of these results, we believe that there is compelling reason

to suspect that compiler optimizations could substantially interfere

with binary stylometry.

5 EVADING CODE STYLOMETRY

In this section, we present our code optimization-based binary code

stylometry evasion framework.

5.1 Threat Model

We assume that a programmer knows the crowd among which she

wants to hide identity and also able to collect code samples from

them. She can change the crowd when she wishes. We also assume

that the programmer is skeptical about using any obfuscation or

other black-box methods that are not transparent to her. Here, we

refer the programmer as the attacker and the entity interested

in binary code authorship attribution as the defender, since the

programmer is potentially attacking the authorship attribution for

evasion.

Current compiler provenance technology is only able to distin-

guish relatively coarse levels of optimization, as discussed in Section

3. Accordingly, we also assume that defender is able to perform a

limited degree of compiler provenance, distinguishing between the

optimization flags -O0, -O1, -O2, and -O3.

Under these circumstances, the goal of the attacker is to re-

peatedly query the defender’s models, using the results to find

combinations of optimizations which can mislead attribution. Be-

cause even a single query takes a non-trivial amount of time, the

attacker would ideally like to find such a combination within a

reasonably small number of queries. Figure 3 summaries our attack

methodology.

5.2 Attack Methodology

To decouple our framework from any stylometric approach, we

assume only limited access to our target stylometry model. We are

allowed to compile our program with whatever flags we choose,

submit it to the classifier, and observe which author it is attributed

to and the confidence of that attribution. We do not have direct

access to any structural information about the model, such as the

set of features it uses.

Since the defender is able to perform compiler provenience for

-O0, -O1, -O2, and -O3 optimization flags, we use an ensemble of

four classifiers trained on datasets compiled with these four flags.

To avoid the added complexity of actually performing compiler

provenance on the binary, we simply feed our input program to

each of these classifiers in turn, and use the lowest error rate of any

classifier in the ensemble to quantify the effectiveness of the attack.

In this way, we model a defender which is capable of identifying

with perfect accuracywhich of the four coarse levels of optimization

best matches our input program.

Next, we define our objective function. The input to this function

is a binary vector, indicating which of 192 of GCC’s optimizations

to use. Given the input program, our framework compiles it with

the given set of optimizations, and submits it to our ensemble of

classifiers. Our objective function is equal to 1 minus the confidence

of the most confident correct attribution. If all of the classifiers in

the ensemble misclassify the binary, then the attack is considered a

success.

Formally, let ®𝑣 ∈ F𝑛2 denote a binary vector corresponding to a

certain set of optimizations, and let 𝐶 denote an ensemble of classi-

fiers. We model each classifier as a function 𝑐𝑖 ∈ 𝐶 : F𝑛2 → [0, 1].

Let 𝑎𝑖 denote the confidence with which the classifier 𝑐𝑖 correctly

attributes a binary compiled with the given set of optimizations, or

0 if the binary is misclassified. Then 𝑐𝑖 (®𝑣) := 1 − 𝑎𝑖 . Our objective

is to find ®𝑣 such that:

argmax
®𝑣

𝑓 (®𝑣)

where

𝑓 (®𝑣) = 𝑚𝑖𝑛({𝑐 (®𝑣)}) ∀𝑐 ∈ 𝐶

For example, suppose we compile a program with a certain set

of optimizations and feed it to our ensemble of classifiers. The

classifiers trained on -O0 and -O1 both misclassify the binary, while

the classifier trained on -O2 correctly attributes it with confidence

0.3, and the classifier trained on -O3 correctly attributes it with

confidence 0.4. In this case, our objective function is 1 minus the

largest of these values, or 0.6.

To actually carry out our attack, our framework maximizes this

objective function using Bayesian Optimization, and specifically us-

ing the REMBO platform [55]. At each step of the process, REMBO

outputs a binary vector indicating a set of optimizations to use, and

is given the computed objective function in return, which helps

determine the next set of optimizations to try. Recall that REMBO

is able to substantially improve the efficiency of Bayesian Optimiza-

tion on high-dimensional functions (such as our objective function)

when the intrinsic dimensionality is low. We conservatively esti-

mate that the intrinsic dimensionality of our problem is 20, as this

is at the upper end of the range where Bayesian Optimization is

believed to be effective [22].

6 EVALUATION

Our experimental evaluation seeks to evaluate the effectiveness

of our authorship attribution evasion technique. Specifically, Our

experimental evaluation answers the following research questions:

• Can our compiler optimization-based evasion method sys-

tematically generate adversarial examples?

• What is the impact of the number of iterations in Bayesian

optimization on finding adversarial examples?

Next, we discuss our experimental setup, design and finally our

evaluation results.

6.1 Experimental Setup

We used the Google code jam dataset that we used for our prelimi-

nary exploration (Section 4.1). We ran our experiment on a server

with 32 cores (@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu 20.04

and GCC 7.5.0.

Ensemble

Classifier

Code Dataset
O0

O1

O2

O3
Source CodeAdversarial

Compiler

Global

Optimizer

Binary

Compiler Params

Adversarial Example

Attack Phase

Binary Datasets Classifiers

Training Phase

Evaded?

Figure 3: An overview of our attack methodology.

(a) Line graph depicting the drop in classifier accuracy as the

number of iterations increases in each of our four experiments.

(b) Line graphdepicting the improvementsmade to the objective

function over time when an adversarial example was not found.

Figure 4: Summarizes our attack results.

6.2 Experimental Design

For each experiment, we randomly sample 10 authors with 8 pro-

grams per author from theGoogle Code Jam dataset.We use Caliskan

et al’s [9] model as an authorship attribution oracle, which our

framework aims to evade. This model was chosen because it repre-

sents the state-of-the-art in binary stylometry. Note that, since, our

framework does not directly depend on Caliskanet al’s model [9],

it could potentially be used to evade any such system.

To build the authorship attribution model for these 10 program-

mers, we use 7 programs for each. The remaining 10 programs

are used to perform 10 attacks on the model, one for each author.

To avoid complications from a single problem being particularly

ill-suited for stylometry (for example, because it is very simple), we

ensure that the ’testing’ programs are chosen evenly between the 8

problems in the dataset. Finally, we assign a computational budget

of 100 total iterations. The success of the attack is the maximum

value of the objective function that it managed to locate.

6.3 Replication of Caliskan et al.

The evaluation of our method critically depends on the performance

of Caliskan et al’s model [9]. For sanity checking, we replicated the

work of Caliskan et al. [9]. Using their publicly provided code, we

were able to build a stylometric classifier with 90% accuracy, using

a dataset of 20 authors and 8 programs per author.

This number is meaningfully lower than the 99% accuracy re-

ported by Caliskan et al. under the same conditions, but similar

to the figure reported by Meng et al. in their 2018 replication of

Caliskan’s work [31]. Both our work and Meng’s used a 64-bit plat-

form, while Caliskan et al. studied 32-bit platforms, which may

account for some of the difference.

6.4 Results

Finding adversarial examples. We have completed a total of 40

attacks, using 4 random and independent samples of 10 authors

from the Google Code Jam Dataset. Our results are presented in

Table 2. For each sample, we give the success rate, which is the

proportion of programs in that sample for which we successfully

found an adversarial examplewithin 100 iterations.We also describe

the average number of iterations required to find an adversarial

example in successful attacks. Finally, we present the average value

of the objective function attained in unsuccessful attacks (recall

that our objective function is equal to 1 minus the confidence of

the most confident correct attribution).

In all cases, the classifier models attained an accuracy of roughly

85% on the training dataset, with 7 instances per author. Our at-

tack succeeded in reducing this accuracy to 45%. In cases where an

Sample Success Rate Successful At-

tack Duration

Failed Attack

Avg. Value

1 0.7 4.43 0.81

2 0.5 1.4 0.69

3 0.7 1.0 0.71

4 0.3 2.0 0.65

Total 0.55 2.32 0.7

Table 2: Summarizes the results of our experiments. The suc-

cess rate is the proportion of times our attack produced an

adversarial example. Also presented is the average number

of iterations required to find an adversarial example, and

the average value of the objective function when an adver-

sarial example could not be found after 100 iterations. Sta-

tistics are presented for each sample individually, as well as

in aggregate.

adversarial example was found, the average number of iterations

required was only 2.32. In other words, simply choosing a random

selection of optimizations was often sufficient to produce an ad-

versarial example. However, when this initial random selection

failed, our technique typically failed to find an adversarial example

within 100 iterations. Nonetheless, even when the attack failed, the

attribution of the binary on average had only 30% confidence.

Impact of the number of iterations.We show the impact of the

number of iterations to find adversarial examples in Figure 4. Figure

(a) reinforces the observation that most adversarial examples were

found in the first few iterations. However, from figure (b), we can

see that the system continued to find modest improvements to the

objective function throughout, decreasing the confidence of the

final attribution.

The high success rate of our initial query supports our hypothesis

that using atypical combinations of optimizations can substantially

interfere with binary stylometry, even in the absence of repeated

rounds of refinement. At the same time, however, repeated itera-

tions led to only marginal improvement in the effectiveness of the

attack. It is possible that this is a result of insufficient computational

resources, or an indication that we chose too high a number for

the dimensionality of the problem. But it may also indicate limita-

tions on the possibility of crafting extremely effective adversarial

examples using compiler optimizations alone ś further data will be

required to form more definitive judgments.

7 DISCUSSION

Prior work on binary stylometry has assumed full knowledge of

the tool chain used to produce the target binary, including the

exact optimizations used [9]. However, as discussed in section 2.4,

this is in general not possible to guarantee. Our results suggest

provisionally that violating this assumption by using non-standard

optimizations can substantially reduce classification accuracy. In

fact, even without access to a stylometric classifier, simply choosing

sets of optimizations uniformly at random may be an effective

and easily-implemented strategy for programmers to obscure their

stylistic fingerprint.

While our technique is non-deterministic, it does not make any

strong guarantees about the distribution of optimizations it will

ultimately choose. It is therefore conceivable that a sophisticated

defender could utilize our technique to produce a representative

set of optimizations and use them to train a classifier which would

be robust against our attack. To combat this, the attacker could

begin their attack by randomly choosing some percentage of the

possible optimizations, and restricting their search only to those.

By increasing or decreasing this percentage, the attacker would be

able to make a tradeoff between the power and flexibility of the

attack on the one hand, and the ease with which the defender could

predict the optimizations at play on the other.

Finally, several interesting questions arose during the course

of this work which could not be answered because of constraints

on time and resources. To understand the feasibility of adversarial

attacks on stylometric tools more deeply, it will be necessary to

replicate our experiment undermany different conditions, including

datasets of different size and from different sources.

8 RELATED WORK

8.1 Code Stylometry

Formal research into code stylometry began in the 1970s, where it

was primarily focused on the problem of plagiarism detection [37] [17].

This research focused on manually searching for comprehensible

measures of code similarity, which were then empirically validated

on datasets of student code. Early emphasis was placed on lexi-

cal features, such as counting the number of operands or lines of

code. Later, researchers shifted towards syntactic features, such as

a preference for certain data structures, which are more resilient to

sophisticated plagiarism methods [19, 48, 56].

Study of authorship attribution Ð that is, research premised on

the idea that authors have unique and identifiable fingerprints Ð

began in the late 80s [36], and was strongly influenced by the work

of Spafford and Weeber[50] in 1993. Spafford and Weeber were

among the first to consider authorship attribution in an adversar-

ial context, investigating whether it could be used to identify the

authors of malware.

In these early decades, focus was placed on easily interpreted fea-

tures, chosen manually by human researchers. In 2006, Frantezkou

et al. revolutionized the field by proposing the use of byte-level

ngrams [20, 21], which they showed to by highly effective for sty-

lometry. Subsequent research has largely followed in their footsteps,

automatically extracting relevant features from their data rather

than defining them in advance. In addition to ngrams, features ex-

tracted from the abstract syntax tree (AST) of a program have also

become standard [4, 10, 41].

The current state of the art in source-level stylometry is repre-

sented by Caliskan et al., who use a wide range of automatically-

extracted features to classify 1600 authors with 94% accuracy [10].

More recently, Abuhamad et al. report 92% accuracy in classifying

8903 authors, using primarily lexical features and recurrent neural

networks [1].

8.2 Binary Stylometry

The application of stylometry to binary programs is more recent.

Rosenblum et al. were among the first to consider the problem in

detail, and found that programmer style appeared to meaningfully

survive the compilation process [46]. Caliskan et al., whose work

is the subject of the attack described in this paper, improved on

Rosenblum’s results through the use of a random forest classifier [9].

Meng et al. consider the problem in the context of programs written

by multiple authors, and propose fine-grained stylometric analysis

at the level of individual basic blocks [32].

8.3 Evasion of Stylometry

Despite growing interest in the application of stylometry to adver-

sarial scenarios, relatively little work has considered the applica-

tion of adversarial machine learning to evade stylistic classification.

Brennan et al. considered manual attacks on literary stylometry,

but did not find effective automatable methods for evasion [8]. Muir

et al. investigated the possibility of using compiler optimization

and static linkage to evade binary stylometry. They achieved mod-

est decreases in accuracy, but only considered two different levels

of optimization [34]. In 2018, Meng et al. were among the first to

study adversarial attacks on binary stylometry by altering a pre-

existing binary, and achieved a high success rate in untargeted

attacks [31]. Quiring et al. presented the first automated attack on

source-level stylometry in 2019, using the Monte-Carlo Tree Search

method alongside several hand-crafted code transformations to

create plausible-looking adversarial examples [42].

While not related to stylometry as such, Ren et al [45]. investigate

the impact of non-standard optimizations on binary diffing. Using

the genetic algorithm to select optimizations, they were able to

create effective adversarial examples for malware detection tools.

There are several studies on evading textual stylometric clas-

sifiers [24, 28, 29, 44, 49]. In [44], authors proposed a round trip

translation-based method to break stylometric linkability, but this

was shown to be infefective in practice [30]. Later, McDonald et al.

proposed a machine learning-based tool which would produce a

sequence of suggestions enabling users to anonymize their own

documents [30]. Shetty et al. proposed A4NT [49], which used an

approach similar to generative adversarial networks (GAN) [23] to

anonymize documents while preserving semantics. A4NT is suit-

able for mapping the writing style of a group of people to another

group. Mahmood et al. proposed a semantic guided mutation-based

approach to obfuscate stylistic features of a given text [29]. Recently,

Gröndahl and Asokan [24] and Krishna et al. [28] have showed the

feasibility of style transfer by leveraging recent advances in text

paraphrasing.

9 CONCLUSION

In this paper, we showed that compiler optimization plays a bigger

role in the accuracy of binary code stylometry than previously un-

derstood. Based on this insight, we developed an evasion technique

to protect programmers’ privacy against systematic surveillance.

The experimental evaluation on the Google Code Jam dataset shows

the effectiveness of our approach. Note that our method does not

directly produce evading samples for the programmer. Instead, it

recommends a set of compiler optimization flags for the compilation

to produce an evading sample, providing more transparency than

traditional transformation-oriented feature-perturbation-based eva-

sion techniques.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foun-

dation under grant no. 1908313.

REFERENCES
[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang.

Large-scale and language-oblivious code authorship identification. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 101ś114, 2018.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers ś Principles, Techniques,
and Tools. Addison-Wesley, Reading, Mass., 1985.

[3] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert
Rubio. Gasol: Gas analysis and optimization for ethereum smart contracts. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 118ś125,
2020.

[4] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel
Greenstadt. Source code authorship attribution using long short-term memory
based networks. In European Symposium on Research in Computer Security, pages
65ś82. Springer, 2017.

[5] Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 274ś283. PMLR, 2018.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of machine learning research, 13(2), 2012.

[7] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317ś331, 2018.

[8] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial stylometry:
Circumventing authorship recognition to preserve privacy and anonymity. ACM
Transactions on Information and System Security (TISSEC), 15(3):1ś22, 2012.

[9] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck,
Rachel Greenstadt, and Arvind Narayanan. When coding style survives compila-
tion: De-anonymizing programmers from executable binaries. In Proceedings of
the 2018 Network and Distributed System Security Symposium (NDSS), February
2018.

[10] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare
Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers
via code stylometry. In 24th USENIX Security Symposium, pages 255ś270, 2015.

[11] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interproce-
dural constant propagation. ACM SIGPLAN Notices, 21(7):152ś161, 1986.

[12] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of
neural networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 39ś57. IEEE Computer Society, 2017.

[13] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-optimized smart
contracts devour your money. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 442ś446, 2017.

[14] Christian Collberg, Edward Carter, Saumya Debray, Andrew Huntwork, John
Kececioglu, Cullen Linn, and Martin Stepp. Dynamic path-based software wa-
termarking. In Proc. ACM SIGPLAN ’04 Conference on Programming Language
Design and Implementation (PLDI-2004), June 2004.

[15] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading classifiers by morphing in
the dark. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 119ś133. ACM, 2017.

[16] Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Transactions on Programming Languages
and Systems, 22(2):378ś415, March 2000.

[17] John L Donaldson, Ann-Marie Lancaster, and Paula H Sposato. A plagiarism
detection system. In Proceedings of the twelfth SIGCSE technical symposium on
Computer science education, pages 21ś25, 1981.

[18] Maciej Eder. Rolling stylometry. Digital Scholarship in the Humanities, 31(3):457ś
469, 2016.

[19] Jinan AW Faidhi and Stuart K Robinson. An empirical approach for detecting
program similarity and plagiarismwithin a university programming environment.
Computers & Education, 11(1):11ś19, 1987.

[20] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis Kat-
sikas. Effective identification of source code authors using byte-level information.
In Proceedings of the 28th international conference on Software engineering, pages
893ś896, 2006.

[21] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis
Katsikas. Source code author identification based on n-gram author profiles. In
IFIP International Conference on Artificial Intelligence Applications and Innovations,
pages 508ś515. Springer, 2006.

[22] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[23] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 2672ś2680, 2014.

[24] TommiGröndahl andN. Asokan. Effectivewriting style transfer via combinatorial
paraphrasing. Proc. Priv. Enhancing Technol., 2020(4):175ś195, 2020.

[25] Patrick Juola. How a computer program helped reveal JK Rowling as author of A
Cuckoo’s Calling. Scientific American, 20:13, 2013.

[26] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and
Alina Matyukhina. Code authorship attribution: Methods and challenges. ACM
Computing Surveys (CSUR), 52(1):1ś36, 2019.

[27] Mahmut Kandemir, N Vijaykrishnan, and Mary Jane Irwin. Compiler optimiza-
tions for low power systems. In Power aware computing, pages 191ś210. Springer,
2002.

[28] Kalpesh Krishna, John Wieting, and Mohit Iyyer. Reformulating unsupervised
style transfer as paraphrase generation. In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
737ś762. Association for Computational Linguistics, 2020.

[29] Asad Mahmood, Faizan Ahmad, Zubair Shafiq, Padmini Srinivasan, and Fareed
Zaffar. A girl has no name: Automated authorship obfuscation using mutant-x.
Proc. Priv. Enhancing Technol., 2019(4):54ś71, 2019.

[30] Andrew W. E. McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and
Rachel Greenstadt. Use fewer instances of the letter "i": Toward writing style
anonymization. In Privacy Enhancing Technologies - 12th International Symposium,
PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings, pages 299ś318, 2012.

[31] Xiaozhu Meng, Barton P Miller, and Somesh Jha. Adversarial binaries for author-
ship identification. arXiv preprint arXiv:1809.08316, 2018.

[32] Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. Identifying multiple
authors in a binary program. In European Symposium on Research in Computer
Security, pages 286ś304. Springer, 2017.

[33] Frederick Mosteller and David L Wallace. Inference in an authorship problem:
A comparative study of discrimination methods applied to the authorship of
the disputed federalist papers. Journal of the American Statistical Association,
58(302):275ś309, 1963.

[34] Macaully Muir and Johan Wikström. Anti-analysis techniques to weaken author
classification accuracy in compiled executables, 2016.

[35] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning
algorithms with back-gradient optimization. In Bhavani M. Thuraisingham,
Battista Biggio, David Mandell Freeman, Brad Miller, and Arunesh Sinha, editors,
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
AISec@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 27ś38. ACM, 2017.

[36] Paul W Oman and Curtis R Cook. Programming style authorship analysis. In
Proceedings of the 17th conference on ACM Annual Computer Science Conference,
pages 320ś326, 1989.

[37] Karl J Ottenstein. An algorithmic approach to the detection and prevention of
plagiarism. ACM Sigcse Bulletin, 8(4):30ś41, 1976.

[38] James Pallister, Simon J Hollis, and Jeremy Bennett. Identifying compiler options
to minimize energy consumption for embedded platforms. The Computer Journal,
58(1):95ś109, 2015.

[39] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun
Yi, editors, Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April
2-6, 2017.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825ś2830, 2011.

[41] Brian N Pellin. Using classification techniques to determine source code au-
thorship. White Paper: Department of Computer Science, University of Wisconsin,
2000.

[42] ErwinQuiring, AlwinMaier, and Konrad Rieck. Misleading authorship attribution
of source code using adversarial learning. In 28th USENIX Security Symposium,
pages 479ś496, 2019.

[43] Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mourad Deb-
babi. Bincomp: A stratified approach to compiler provenance attribution. Digital
Investigation, 14:S146śS155, 2015.

[44] Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really guarantee privacy?
In 9th USENIX Security Symposium, Denver, Colorado, USA, August 14-17, 2000,
2000.

[45] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. Unleashing the hidden
power of compiler optimization on binary code difference: An empirical study.
In Proceedings of the ACM International Conference on Programming Language
Design and Implementation (PLDI), June 2021.

[46] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. Who wrote this code?
identifying the authors of program binaries. In European Symposium on Research
in Computer Security, pages 172ś189. Springer, 2011.

[47] Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. Extracting compiler
provenance from program binaries. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages
21ś28, 2010.

[48] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algo-
rithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 76ś85, 2003.

[49] Rakshith Shetty, Bernt Schiele, and Mario Fritz. A4NT: author attribute
anonymity by adversarial training of neural machine translation. In William
Enck and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1633ś1650. USENIX
Association, 2018.

[50] Eugene H Spafford and Stephen A Weeber. Software forensics: Can we track
code to its authors? Computers & Security, 12(6):585ś595, 1993.

[51] Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based classifier:
A case study. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 197ś211. IEEE Computer Society, 2014.

[52] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[53] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-
Henrik Jacobsen. Fundamental tradeoffs between invariance and sensitivity to
adversarial perturbations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 9561ś9571. PMLR, 2020.

[54] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
On adaptive attacks to adversarial example defenses. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[55] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. Bayesian optimization in high dimensions via random embeddings. In
IJCAI, pages 1778ś1784, 2013.

[56] Geoff Whale. Identification of program similarity in large populations. The
Computer Journal, 33(2):140ś146, 1990.

	Abstract
	1 Introduction
	2 Background
	2.1 Code Stylometry
	2.2 Compiler Optimization
	2.3 Adversarial Machine Learning
	2.4 Bayesian Optimization

	3 Design Intuitions
	3.1 Optimizations affect core features
	3.2 Impact of code structure on optimization
	3.3 Interactions between optimizations
	3.4 Optimization and stylometry
	3.5 The difficulty of provenance analysis

	4 Preliminary Exploration
	4.1 Google Code Jam Dataset
	4.2 Impact of optimization on core features

	5 Evading Code Stylometry
	5.1 Threat Model
	5.2 Attack Methodology

	6 Evaluation
	6.1 Experimental Setup
	6.2 Experimental Design
	6.3 Replication of Caliskan et al.
	6.4 Results

	7 Discussion
	8 Related Work
	8.1 Code Stylometry
	8.2 Binary Stylometry
	8.3 Evasion of Stylometry

	9 Conclusion
	Acknowledgments
	References

