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ABSTRACT

The latest generation of IoT systems incorporate machine learning

(ML) technologies on edge devices. This introduces new engineering

challenges to bring ML onto resource-constrained hardware, and

complications for ensuring system security and privacy. Existing

research prescribes iterative processes for machine learning enabled

IoT products to ease development and increase product success.

However, these processes mostly focus on existing practices used in

other generic software development areas and are not specialized

for the purpose of machine learning or IoT devices.

This research seeks to characterize engineering processes and se-

curity practices for ML-enabled IoT systems through the lens of the

engineering lifecycle. We collected data from practitioners through

a survey (N=25) and interviews (N=4). We found that security pro-

cesses and engineering methods vary by company. Respondents

emphasized the engineering cost of security analysis and threat

modeling, and trade-offs with business needs. Engineers reduce

their security investment if it is not an explicit requirement. The

threats of IP theft and reverse engineering were a consistent con-

cern among practitioners when deployingML for IoT devices. Based

on our findings, we recommend further research into understanding

engineering cost, compliance, and security trade-offs.
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1 INTRODUCTION

The Internet of Things (IoT) paradigm integrates cyber and physical

components, connecting devices at the network edge (“Things”)

to one another and to more powerful resources over the network

(“Internet”) [15]. There are ∼35 billion IoT devices worldwide, pro-

jected to double by 2025 [30, 57, 58]. IoT systems can leverage

machine learning (ML) [38, 39] to make low-latency intelligent

decisions [8, 67]. The resulting intelligent IoT systems could trans-

form many sectors of the economy [42], however, the associated

risks are also substantial. To minimize the risks, engineers should

adopt ML methods on resource-constrained IoT devices in a secure,

privacy-preserving way [16].

Despite the increasing importance of intelligent IoT systems

to consumers, industry, and governments, we know relatively lit-

tle about manufacturers’ engineering practices [28, 46, 53]. Con-

cerns about engineering practices are raised by high profile fail-

ures, including cyberattacks on waterworks systems leading to poi-

soned water supply [55], aggressive data collection practices [4, 48]

and exploits leading to IoT botnets [1]. Researchers have inves-

tigated IoT software defects [46] and security flaws [12, 18, 20–

23, 25, 34, 35, 47, 61] from the software perspective using pro-

gram analysis and failure analysis. Also, researchers have proposed

generic models of the secure software development life cycle (SDLC)

for the development of ML models and the development of ML-

enabled edge devices [28, 53]. However, the challenges of real-world

adoption and current industry practices are largely unexplored.

Our goal is therefore to investigate the process of engineering

ML-enabled IoT devices in industry. Our general research questions

are:What practices does the industry follow to develop and manage

ML-based IoT devices? How is security treated in industry development

life cycles? We investigate these questions in a survey (N=25) and

interviews (N=4) with industry practitioners.

Among other findings, our survey respondents and interview

subjects emphasized tradeoffs between engineering cost and quality.

Market forces reduce the quality and security of IoT products. As

one interview subject (P2) said, “it is a question of if it [better security]

will be accepted by the market”. Larger companies benefit from

economies of scale, with in-house ML and security specialists to

support IoT products. We also learned that businesses may give up

some marketable functionality in order to reduce their risk, e.g., not
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storing user data on IoT devices. Across several industry sectors,

another common worry is the reverse engineering of proprietary

ML models.

2 BACKGROUND

This research is motivated by an industry trend towards computing

systems with intelligent components at the network edge, and the

associated security and privacy implications. Definitions of an “IoT

device” vary [56]; we consider deviceswith sensors and/or actuators,

a network connection, and limited resources in memory, power, and

computation [33, 66]. Resource-constrained IoT systems combine

sensing and communication capabilities with low cost [50, 70].

Engineering process for IoT: Engineering processes for IoT sys-

tems are complex because IoT systems are inherently distributed

and resource-constrained, and have physical components alongside

virtual ones [68]. Figure 1 depicts a generic engineering lifecycle

for ML-based IoT systems, which we used to design our study. This

lifecycle combines several existing works [2, 28, 53]. In this model,

IoT engineering is a five-step iterative process:

Specification: The purpose of the product is defined, perhaps

constraining the hardware and software components.

Design: Decisions are made about system architecture, frame-

works are selected, and evaluation techniques are chosen.

Development: Design decisions are implemented using develop-

ment frameworks. The ML model is optimized by tuning hyperpa-

rameters, reducing the computational complexity of the model (eg:

deep learning-based models), and manipulating network blocks [26,

40]. The implementation targets a hardware profile but not specific

devices, to promote portability.

Deployment: The developed solution is deployed to the target

hardware. Deployment-time optimizations such as pruning help

fit the model into the IoT device constraints [39]. Optimization

strategies are standardized, but the parameters vary based on the

available resources of the target hardware [53].

Audit: Here the software components have been deployed to the

hardware components, and engineers determine whether the sys-

tem specification is met. Concerns may be raised about performance

goals, fault tolerance [31, 59], or security vulnerabilities. Engineers

consider traditional threat models as well as those specific to the use

of ML. For example, researchers have proposed attacks involving

corrupted training data [69] or reverse engineering a model [49].

Security in IoT: Security is a cross-cutting concern for engineered

systems [51]. Security is increasingly incorporated throughout

the engineering life cycle (Figure 1) [41]. However, IoT develop-

ers find security challenging and complicated [46]. Engineering

teams feel responsible for security, but often lack a formal security

process [9, 45, 63]. Functionality and deadlines are often priori-

tized over security [14, 24, 43], and adding security to resource-

constrained devices penalizes power consumption, latency, and

throughput [11, 60].

Although this engineering process model for ML-based IoT de-

velopment is a promising start, the research community still lacks

insight into industry practices. This knowledge gap hinders our

understanding of industry-wide problems and challenges towards

building and maintaining secure ecosystems. This study is a step

towards filling that gap.

3 RESEARCH QUESTIONS

To understand the processes and challenges of engineering secure

ML-enabled IoT systems, we posed five research questions across

two themes. The first theme explores ML engineering in a resource-

constrained context, with implications for IoT system trustwor-

thiness (e.g., affecting security and privacy). The second theme

examines cybersecurity practices for these systems.

Theme 1: Applying machine learning on IoT devices

RQ1: What are the common practices for bringing ML to resource-

constrained edge devices? (Process model steps 3a-3d)

RQ2: What are the challenges and consequences developers face

due to resource limitations in developing ML software for

edge devices? (Steps 3a-3d)

Theme 2: Engineering secure IoT systems

RQ3: How do engineers incorporate security into the IoT engi-

neering process? (Steps 1-5)

RQ4: How do engineers reason about trust in ML-based IoT sys-

tems? (Step 4)

RQ5: What other factors affect security practices in IoT engineer-

ing? (Steps 1-5)

4 METHODOLOGY

Given our research questions, we chose an exploratory methodol-

ogy [54] — a mixed quantitative and qualitative approach to explore

a phenomenon and develop new research questions. We elicited

coarse data with a survey, and detailed insights using interviews.

4.1 Survey

Instrument design:We designed a ∼10-minute, 32-question sur-

vey instrument aligned with our research questions. We drew on

existing literature for seven demographic questions [10, 13], and

developed the other questions using best practices in survey de-

sign [29]. The initial set of questions were based on our own indus-

try experience working with ML on IoT devices, and then refined

through discussion with practitioners. To test validity and length,

we administered the survey to two practitioners and further refined

it based on their feedback.

Survey distribution: Given the specialized nature of the engi-

neering security practices under consideration, we distributed the

surveywidely: on the public platforms Reddit, Hacker News, and To-

wardsAI; through our personal networks via Facebook and LinkedIn;

and on our departmental mailing list. We also asked survey re-

spondents to share the link with their colleagues (snowball sam-

pling [36]). The survey was published in the last week of March

2021 and closed after 5 weeks. We incentivized survey participation

with a 1-in-50 chance of winning a $50 gift card.

Analysis method:We analyzed the data using reports generated

using the Qualtrics platform. We examined the data from each

question, aggregated across all participants. In order to have a

uniform scale of results, we have represented all the data in the

survey in terms of the percentage of total responses in the diagrams

for the purpose of visualization.
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2. Design 3. Development 4. Deployment 5. Audit

3a. Model 

Selection
3b. Model 

Generation

3c. Model 

Optimization

3d. Model 

Evaluation

Risk Assessment Threat Modeling Static Analysis Exploratory Attacks

Evasion Attacks

Data Poisoning Attacks

Manual Testing 

Dynamic Analysis

1. Specification

Security-specific Tasks

RQs 1, 2

RQs 3, 5 RQs 3, 4, 5

ML-specific Tasks

Figure 1: An engineering lifecycle for machine learning-based IoT devices. It combines several models including the SDLC [2, 28, 53].

4.2 Interviews

Protocol design:We designed our interview protocol as an exten-

sion of the survey questions. We observed survey responses and

developed questions around areas where the survey respondents

disagreed or gave unexpected answers. The interview followed a

semi-structured interview, with 8 planned questions to permit a

30-40 minute conversation with each subject [27]. To test validity

and length, we piloted the interview protocol with one practitioner.

Participant recruitment: We recruited interviewees from the

survey respondent pool. Survey respondents had experience in ML

and IoT engineering, making them good candidates for a longer

interview. Survey respondents could indicate if they were interested

in a follow up interview, incentivized with a $25 gift card. We

contacted all interested respondents, and interviewed any who

replied and completed the interview consent form.

Participant privacy: Audio recordings of interviews were tran-

scribed by a third-party service. We anonymized participant PII

(e.g., names of people and companies) before analysis.

4.3 Collected data

Survey: We received a total of 25 survey responses, of which

14 were fully completed. Given the few full responses, we also

analyzed the available data from partial responses. The median

partial respondent completed 42% of the survey.

Interview:We interviewed 4 experts, with a range of positions and

professional experience. The interviews comprised 140 minutes of

audio recordings.

5 RESULTS AND ANALYSIS

Wepresent results corresponding to our RQs. To simplify the presen-

tation, we synthesize survey and interview data for each question.

5.1 Demographics

Survey respondents (Figure 2) hold bachelor’s degrees in computer

science, software engineering, computer engineering, or electrical

engineering; work primarily in the sectors of consumer electron-

ics (27%), IT & telecommunications (22%), automotive (20%), and

healthcare & biomedical (15%); and learned about ML techniques

Figure 2: Demographics of survey respondents.

Table 1: Interview Subjects

Identifier Role (Company type) Experience

P1 Principal System Architect (HW vendor) 20 years

P2 Senior developer (HW vendor) 20 years

P3 Chief Architect (Start-up) 30 years

P4 ML Engineer (ML services) 3 years

from university coursework (41%), self-taught (37%), and from cor-

porate training (20%). They work at a range of company sizes, from

under 50 employees (36%) to over 2,000 (32%). They have a range

of experience applying ML in software engineering, ∼30% more

than 5 years and ∼70% fewer. At their companies, they reported an

almost equal distribution of ML deployment experience: from initial

exploration/prototyping stages to “multiple projects” to extensive

multi-platform experience (Figure 4).

Interview subjects (Table 1) had a range of job roles, and expe-

rience in sectors including manufacturing, consumer electronics,

defense, and medical devices.
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5.2 Theme 1: Machine Learning for IoT Devices

RQ1: Common ML practices for IoT. ML modeling: ML algo-

rithms are one ingredient of next-generation IoT systems. We asked

survey respondents and interview subjects where their models

come from. Survey respondents rely on academic research, re-using

models entirely or tailoring them to their company’s needs (Fig-

ure 3). Notably, none of the survey respondents indicated that they

follow product line development (i.e., , reuse models from one prod-

uct to the next) for their ML models. P3 characterized the sources

used by his start-up:

“In the ML world, [if] you don’t read a paper every

single day, you are in trouble...IEEE papers and...we

also look at results that come out of Google, Facebook,

Amazon and Microsoft.”

Companies with deeper expertise also develop models internally;

P1 said, “[My company’s] research team does a lot of research around

machine learning, and we...use the frameworks developed by them.”

Figure 3: Source of ML models in practice.

ML development: TensorFlow/TF-Lite and PyTorch were the most

popular modeling frameworks; Python and C/C++ were the most

popular languages. To train and validate models, survey respon-

dents follow standard practices: splitting training and testing data,

applying K-fold/cross validation, etc.

Engineering processes:Our data show that the industrymovement

towards incremental development and agile methodologies [41]

includes IoT systems development. Among survey respondents,

48% report using “Agile” as their software development process,

the most popular response. Our interview subjects concurred. As

interviewee P3 said:

“We tend to follow the agile flow...2 years ago we

[were]mostly waterfall, the old-fashionedway...now...95%

of...[our] programs [are agile].”

Figure 4: Survey data on ML maturity, software updates, and data

collection.

This adoption includes the Continuous Integration/Continuous

Deployment (CI/CD) approach. Half of the survey respondents said

their teams incorporate MLmodels into the rest of their IoT systems

during CI, 25% said “Before deployment”, and only 16% said their

integration occurred at software release time. Interviewee P3 said:

“At every stage of our Agile flow...[we have a] CI/CD-

based validation flow...as part of the weekly sprints

trying to meet accuracy, latency and throughput.”

After IoT device deployment, many survey respondents report that

they improve the ML models in their products by collecting new

data and sending software updates (Figure 4).

RQ2:ML challenges and consequences for IoT.ML on resource-

constrained devices: IoT engineersworkwithin hardware constraints.

Over 90% of survey respondents said they meet constraints by

changing the software, not the hardware. To meet their resource

constraints, our survey respondents said they use neural network

pruning techniques including regularization, second-order meth-

ods, and variational dropout. As they do so, survey respondents

said they struggle with decreased model performance (38%), mem-

ory constraints (23%), and insufficient expertise (23%) (Figure 5).

Interviewee P3 went into more detail:

“From a technical perspective, one of the biggest prob-

lems that we face is the inability of standard tools

to be able to squash a model into something that fits

with a push of a button.”

Figure 5: Survey data on ML resource constraints.

Our interview participants went into detail about their strat-

egy for estimating ML model performance: back-of-the-envelope

calculations. As P2 said:

“I prefer Excel sheet because bringing emulator to

a state that you can perform simulation takes time.

And also building machine learning algorithms takes

time. So it’s better [to make a] crude estimate...using

Excel sheet...and then simply prepare ML algorithms

that simply relies on this crude estimate.”

Working with customers: P4 noted the challenges of ensuring

robustness as a customer requirement:

“[Clients] give us the validation data set, but not the

test data set...Then they used to run the inference at

their end on the same device and validate if it works

well on the test data set. Even slight changes...distortions...used

to give bad accuracy...So if your model should be ro-

bust to such kind of things, then you need to have

such kind of data in your training data set.”

Edge-Cloud collaboration: Survey respondents described differ-

ent architectures for data processing. Two-thirds follow a hybrid
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strategy, with lighter-weight processing on IoT devices and heavy-

weight processing using Fog or Cloud systems. Edge-only process-

ing was the second most common, and Cloud-only processing was

rare. When placing computation on Edge devices, engineers re-

ported working around the resource limitations of IoT devices.

5.3 Theme 2: Secure IoT engineering

More than half of respondents have experienced a security vulnera-

bility in their current product. One-third have dealt with 1–3 CVEs

(Common Vulnerabilities and Exposures), and one-third with 4 or

more. Understanding how they incorporate security and reason

about trust in their engineering processes may help reduce CVEs.

RQ3: Incorporating security into IoT engineering. Security

Analysis:We asked survey respondents to describe the processes

their teams follow for security analysis. Code review (42%) and

white-box analyses (21%) were the primary ways in which security

checks are realized (Figure 6). Survey respondents and interview

participants also described conducting security reviews and creat-

ing mitigation plans. Interviewee P3 discussed integrating security

into the ML development process:

“It’s not as if every member in the team is...[a security

expert, but] they are [generally] aware of the pitfalls

and needs. But...[we ensure that] a few experts are

always there in the reviews.”

For interviewees working in smaller companies, security analysis

was part of every developer’s job. In larger organizations, inter-

viewees said that security analysis was done by dedicated security

teams. However, developers are still involved and have some famil-

iarity with security analysis methods.

Figure 6: Methods for security analysis. This question was acciden-

tally single-response, so we suppose the respondents interpreted this

as primarymethod.

Threats and threat models: Our subjects said that security threat

analysis was a common part of the development process, but with

varying priority depending on the company size and available re-

sources. Our interviewees indicated that the major threat they

considered was the loss of intellectual property — reverse engineer-

ing of their ML models. Interviewee P1 said the biggest security

challenge they face is in-memory re-engineering: “We try to mimic

scenarios that can breach security...We are careful about snoop-out

transactions.” At P1’s organization the same threat is considered:

“One common area where you can snoop things out

in hardware is the Memory Management Unit...So if

your MMU gets compromised, then you...have physi-

cal addresses and you can do whatever you want with

it. So, secure hardware design become critical.”

By nature, IoT devices interact with humans and the physical

world. This makes privacy a concern for both developers and end-

users. Interviewee P2 said privacy was the most difficult aspect of

security analysis, and described his company’s approach like this:

“The privacy, it is the hard problem...it will be really

visible to the market...We are trying to not store any

private data that could be...used by hacker in any

way....we are simply not trying to tackle such cases.

And from my previous work...It was always an issue

because it is a really hard problem. And it is really

easy to...lose your name, lose your brand.”

RQ4: Trust in IoT systems. Our interviewees identified trust

in researchers, vendors, data, and tool chains.

As highlighted in Figure 3, survey respondents indicated trust in

researchers through the common adoption of research prototypes.

Interviewee P3 described how his company’s ML model training

process is dependent on security features provided by cloud com-

puting platforms:

“So in the fully cloud-based solutions we are largely

dependent on...the goodness of the cloud. It’s almost

impossible to see what Azure, AWS, etc., are doing

under the hood. So there’s a large level of dependence

on their security procedures.”

P3 also noted his trust in development tool chains:

“We...are not doing a whole lot of analysis on weak-

ness of...tools like TensorFlow. If TensorFlow...has a

security hole, there is not much we do about it. ...

[We] have wrappers that ensure there is some levels

of encryption, unhackability before it...goes on to the

eventual edge IoT device. But if you were to question

the IDEs and tools chains having security bugs, there

is nothing we can do about it.”

P1 pointed out his assumptions of trustworthy data:

“We have to ensure that the [training] data...is from

a trusted source, otherwise it becomes a nightmare.”

RQ5: Other factors that affect IoT engineering. Process re-

quirements and regulations:During our surveywe asked participants

about restrictions on their engineering processes and products (Ta-

ble 2). About half comply only with general quality processes (e.g.,

P3: “We are an ISO 9001:2015 company. We rigorously follow the ISO

standards.” ). Other survey respondents comply with governmental

safety and security regulations (26%), and with privacy regulations

like GDPR and HIPAA (22%). In P1’s organization, they prefer to

work with metadata instead of data because of HIPAA requirements:

“Once you start working with meta-data, then you

don’t really need...any private information...so, it be-

comes much easier.”

P1 expanded on the difficulties of regulatory compliance:

“For example, anytime I’m working with the med-

ical data, that becomes a very, very tricky situa-

tion...[you must] set up proper working environment

and...ensure that the data is not leaving your trusted

network...not just personal data, but also [its] trends”
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Table 2: Survey data on process requirements and regulations

What regulations do you have to comply with during your software
development process?

Proportion

General engineering processes like ISO XXX 44%

Governmental privacy regulations like GDPR / HIPAA / FERPA 26%

Governmental safety / security regulations like the IoT Cybersecurity
Improvement Act (requires following NIST guidelines).

22%

Security engineering processes like OWASP SAMM. 7%

Engineering Cost: Several of our subjects pointed out a balance

between security and engineering cost. A survey respondent wrote

that the most challenging aspect is:

“Addressing vulnerabilities properly...within the project

budget...[and] supporting cryptographic functional-

ity for encryption, storage, data transmission, and

key/certificate management.”

Interviewee P2 observed that user visibility may justify engineering

costs:

“First of all you must decide if security is required. If

you push security to a level that is hard to maintain,

and it is adding significant value to the Bill Of Mate-

rials cost, then it is a question if it will be accepted

by the market. I believe, the argument about security

is if it will be visible to the user.”

Interviewee P1 observed that his company invests security re-

sources non-uniformly, with less effort in analyzing software that

they release open-source:

“When we do an open-source release, we don’t worry

much about it...any shortcomings we get notified very

quickly by the open-source community and we can

fix it. Of course, it is not a good thing to release some-

thing insecure to open-source which is not adequately

tested or verified...We mainly ensure that previous oc-

currences of security breaches are tested and we make

it part of the design process.”

6 DISCUSSION

6.1 Comparison to prior findings

Our findings overlapped with prior knowledge in many aspects.

In terms of development tools, our participants followed industry-

wide practices such as using ML frameworks like TensorFlow and

PyTorch and development toolchains based on the Visual Studio/-

Code IDEs. Our participants follow iterative development processes.

The use of hybrid Edge-Cloud architectures is widespread. Power,

memory constraints, and computational constraints are known to

be major challenges within IoT systems. Our participants are aware

of security issues such as data poisoning.

The main difference between the research literature and our

findings is the discussion of engineering cost. Our participants —

perhaps especially those in consumer electronics — reduce security

for cheaper production costs. Similarly, there are many interest-

ing methods of emulation, load-balancing, and system validation

proposed in the research literature, but most respondents’ orga-

nizations do not use these methods. Unlike researchers’ goals of

unbreakable systems, our subjects balance how much security is

possible (relative to its engineering cost) and required (relative to

market demand). The research literature generally does not con-

sider the engineering cost of proposed techniques. Lastly, the many

sources of unverified trust — open-source code, academic research,

and development toolchains — was greater than what we under-

stood in the literature.

6.2 Advice for practitioners

Our study revealed a significant gap between how the academic

community and industry perceive IoT security. This suggests po-

tential value in cybersecurity workforce development [7]. Outside

academia, government guidelines (e.g., from US-NIST [5] and EU-

ENISA [3]) describe secure development lifecycles. NIST [6] rec-

ommends a thorough study on the customers, users, expected use

cases, security risks, and goals during planning, execution, and

post-deployment. Our subjects did not describe such a process.

Given the success of automated code analysis methods such as

static analysis, black-box and grey-box fuzzing in identifying system

vulnerabilities in IT software, we were surprised by practitioners’

continued emphasis on code review and white-box analysis in their

IoT systems. We recommend practitioners integrate such methods

into their product development process [44].

6.3 Future work for researchers

Based on the challenges faced by the practitioners we studied, we

suggest three directions for future research.

First, the IoT domain is characterized by tight profit margins

and low-cost parts. Many of our research subjects were therefore

concerned about the engineering cost of securing IoT devices. It

would be helpful for researchers to offer engineering cost-aware

security processes suited to the constraints of IoT systems engineer-

ing, and practical measurements of this cost. Past research works

primarily focus on trade-offs between security and resource costs,

such as operation delay and energy [19, 65]. Our work identifies the

importance of considering engineering costs, not just the runtime

implications. Our work also complements ongoing research to help

consumers understand how security affects the cost of commodity

IoT devices [32].

Second, practitioners leverage open science and open-source

software for their ML modeling and their development toolchains.

This accelerates development, but introduces substantial risk. For

ML, we recommend that ML researchers carefully document their

research prototypes and the limitations of their work, and that they

can achieve broader impact by participating in community efforts

to develop exemplary ML models (e.g., TorchVision [52] and the

TensorFlow Model Garden [62]). Additional studies of how best to

reproduce and transfer ML knowledge will be helpful [13, 17, 37].

More broadly, given the reliance of our participants on open-source

tools, trustworthy software supply chains will improve the safety

and security of IoT systems [64].

Third, the difficulties experienced by practitioners in following

the compliance restrictions and regulations identified in Table 2

poses a potential research area. For example, researchers could

study the impact of security compliance on security outcomes of

IoT applications, and the tradeoff with engineering cost.
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7 THREATS TO VALIDITY

Construct validity:Our survey instrument and interview protocol

were intended as direct measures of the constructs of interest (i.e.,

engineering practices), and we used pilot studies as a check.

Internal validity: Our study reports on practices without infer-

ences about cause and effect, so internal validity is not a concern.

External validity: The primary limitation of our study is in

its external validity, i.e., generalizability. Our goal was to describe

current practices in IoT engineering, focused on machine learning

and cybersecurity. As is common with studies of this kind, we used

a human-subjects method with a self-report design, which assumes

the respondents were truthful. Beyond the trustworthiness of our

data, we emphasize that we had relatively few survey responses

(N=25). We cannot claim saturation; our results are likely not rep-

resentative of the entire state of practice. In addition, 40.9% of the

survey respondents identified as students for their current position,

and their responses might not reflect the practices in the industry.

As mitigating factors, our survey reached participants from several

industry sectors, and our interview subjects included experts with

a long tenure in industry and experience at several companies.

8 CONCLUSION

In this research attempted to broaden the existing understanding

of IoT engineering practices related to machine learning and cy-

bersecurity. Through our survey and interviews, we found that

the main challenge engineers face when creating an IoT product is

balancing among engineering cost, performance, trust, and security.

We found that organizations place unverified trust in open-source

and academic resources; going so far as to incorporate academic

prototypes of ML techniques into their IoT products. Cybersecurity

investment varies based on resources, engineering cost and orga-

nizational priorities; one organization even explicitly relies on the

open-source community to find vulnerabilities in their software.

Practitioners have not yet adopted academic research in engineer-

ing practices and government recommendations that might address

some of their problems. In the future, we recommend that software

engineering and cybersecurity researchers incorporate engineering

cost considerations into their work, as this was a concern raised by

many of our research subjects.
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