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Abstract—The Microsoft Kinect sensor has brought a new
era of Natural User Interface (NUI) based gaming and the
associated SDK has provided access to its powerful sensors,
which can be utilized in many ways, especially in research
purposes. We have already seen its use in robotics, developing
assistive technologies, and augmented reality, aside from gam-
ing. Thousands of people around the world are playing with its
built-in multimodal sensors, but still a complete emulator for
the Kinect sensor device is lacking, thus requiring a physical
device to do any experiments with it. In this work, we have
come forward with a novel design of an emulator for the
Kinect sensor and its implementation in the .NET platform
using the Microsoft Kinect SDK. We have demonstrated the
applicability of our system through detailed software design,
code descriptions to incorporate this emulator in user’s own
code, and video demonstration of our proposed system.
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I. INTRODUCTION

Kinect is a motion sensing input device by Microsoft for
the Xbox 360 video game console and Windows PCs. It
allows the user to interact with the XBOX gaming machine
without using a game controller, enabling the you are
the controller paradigm. The concept of Kinect is base
on Natural User Interface (NUI) - controlling the devices
through gestures and voice commands. After its release
on November, 2010, the Kinect holds the Guinness World
Record of being the “fastest selling consumer electronics
device”, as a total of 8 million units are sold in its first 60
days. 18 million units of the Kinect sensor had been shipped
as of January 2012 [1].

The Microsoft Kinect device has multimodal sensors - an
RGB camera, an infrared depth sensor, and a microphone
array to capture the surrounding environment. It runs with
proprietary software which provides full-body 3D motion
capture, facial recognition, and voice recognition capabili-
ties. The applications using Kinect sensor access the sensor
data through NUI API library interface calls (Fig. 1). To
facilitate the application development and enhance research
scopes using Kinect, Microsoft has released Kinect Software
Development Kit (SDK) for Windows 7 on June 2011.
Another open source SDK named Open Kinect was there
since November 2010. So lots of researchers and enthusi-
astic students have worked with the Kinect sensor device

exploiting its use it many areas.
One major challenge in working with a sensor device like

Kinect is that we require the hardware in every stage of the
software development. Using Kinect, we are working with
raw sensor data, so many approaches require fine-tuning of
the code with empirical data values. We can say about one
practical challenge we faced when developing a PC mouse
control using Kinect software. We required adjusting the
software parameters painstakingly to make it work smoothly.
One of the major challenges in that project is that we always
required to work with the Kinect sensor to debug or tune our
code. The severity of the problem lies in the fact that we had
to do the same gestures again and again to test our code and
tune it. Again, we had only one device for our five member
team and the device costed about 100 USD, thus making the
problem more complex. We practically felt the necessity of a
emulator device for Kinect during that project development.

In computing, an emulator is a hardware or software or
both that can imitate the functions of a device or system in a
different system or device. In that process the second system
behave closely like the original system. We can use emula-
tors in many cases of software development. For example,
there is Android phone emulators to enable programmers to
develop software for android phones without requiring an
android phone to develop and test the application. There are
other emulators, like 8086 emulator, GPS emulator, etc. But
a complete emulator for the Kinect sensor it not available
till date. In this work, we are going to take the challenge
and provide one.

There has been some works on developing a Kinect
emulator before ours. Among them the most notable is
the Fakenect by Brandyn White [2] with his libfreenect
API. Fakenect was originally developed in python and it
works only in Linux and Mac OSX environment, so users
accustomed to Windows cannot use Fakenect directly. There
have been some modifications by different user groups for
Fakenect that could be supported in Windows too. It has
some unresolved issues about implementation and synchro-
nization. The original version of Fakenect does not include
the implementation of audio features of Kinect. Also, it did
not use any compression techniques in storing raw data, so
the recorded streams took too much space in a very short
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Figure 1. Interaction between the Kinect software and hardware [4].

time. We will discuss about these issues and ways to solve
them in later sections of this paper.

In our work, we have focused to develop a Kinect
emulator using the Microsoft Kinect SDK for the .NET
platform so that people can integrate it and use seamlessly
with their existing code. We have recorded all the raw data
streams (including audio) from the device with necessary
compressions to reduce the amount of data files and then
redirected the recorded streams to make the system believe
that it is using the Kinect device instead of recorded data
from the storage drives. Our process is properly documented
and the users require to change only a few lines in their
code to switch between emulator mode and using real Kinect
devices.

The rest of the paper is organized as follows. Section II
familiarizes us with different sensors in the Kinect device
and their properties. We present out approach in building
a Kinect emulator briefly in Section III. In Section IV,
we describe the background knowledge and terminologies
required to understand our work. In Section V, we present
our approach to store the skeleton data, while In Section VI,
we present our contribution to store video and depth data.
We show our technique to store audio data in Section VII.
Finally we discuss about using our emulator in users’ own
code in the conclusion section.

II. KINECT SENSOR DESCRIPTIONS

We can see the logical interactions between the hardware
and the software components in Microsoft Kinect in Fig. 1.
Three types of data streams are available from the Kinect
sensor: 1) Image Stream, 2) Depth Stream, and 3) Audio
Stream. In this section, we summarize different properties
of these streams (Table I).

A. Image Stream

The RGB video stream uses 8-bit VGA resolution (640
X 480 pixels). Color data is available in the following two
formats:

• RGB color can be provided in 32-bit, linear
X8R8G8B8-formatted color bitmaps, in the sRGB
color space. An application must specify a color or
color YUV image while opening the stream.

• YUV color provides 16-bit, gamma-corrected linear
UY VY-formatted color bitmaps, where the gamma
correction in YUV space is equivalent to sRGB gamma
in RGB space. Since YUV stream uses 16 bits per pixel,

its memory requirement is smaller but YUV data is
available only at 640X480 pixel and at 15 fps [4].

Both color formats are computed from the same camera data,
so that the YUV data and RGB data represent the same
image.

B. Depth Stream

The depth sensor has an infrared laser projector with a
monochrome CMOS sensor, which is capable of capturing
depth data in 3D under any ambient light conditions. The
depth data stream provides frames in which each pixel
represents the Cartesian distance, in millimeters, from the
camera plane to the nearest object at that particular x and y
coordinate in the depth sensor’s field of view. The following
resolutions in depth data streams are available: 1) 640X480
pixels, 2) 320X240 pixels, and 3) 80X60 pixels.

There is another type of data available form Kinect called
Skeleton Data. Kinect can locate the twenty points of a
player’s body. The NUI Skeleton API of Kinect provides
information about these points of a person standing in
front of the Kinect sensor array. The data is provided to
application code as a set of points, called skeleton positions,
which compose a human skeleton [4].

C. Audio Stream

Kinect supports its audio features by implementing a
microphones array consisting of 4 microphones arranged
in a linear or L-shaped pattern. Implementing a set of
microphones has some significant benefit over a single
microphone, like capturing high quality audio, beam forming
and source localization and speech recognition facilities.

III. OUR APPROACH FOR BUILDING THE KINECT
EMULATOR

Microsoft has released their Kinect software development
kit (SDK) for Windows 7 on June 16, 2011 [4]. This SDK
has allowed the developers to write Kinect applications in
C++/ CLI, C#, or Visual Basic.NET. Developers around the
world are trying to use the capabilities of Kinect in different
fields. One of our previous works implementing Natural
User Interface (NUI) based classroom using Kinect has been
published in [5]. There are also some works based on Kinect
such as touch free exploration of medical image data [3],
tracking 3D position, orientation, and full articulation of a
human hand [6].



Table I
SENSOR CAPABILITIES OF MICROSOFT KINECT DEVICE

Sensor item Playable range

Color and depth stream 4 to 11.5 feet (1.2 to 3.5 meters)
Skeletal tracking 4 to 11.5 feet (1.2 to 3.5 meters)
Viewing angle 43◦ vertical by 57◦ horizontal field of view
Mechanized tilt range (vertical) ±28◦

Frame rate (depth and color stream) 30 frames per second (FPS)
Resolution, depth stream QVGA (320 x 240 pixel)
Resolution, color stream VGA (640 x 480 pixel)
Audio format 16-kHz, 16-bit mono pulse code modulation (PCM)
Audio input characteristics A four-microphone array with 24-bit analog-to-digital converter (ADC) and Kinect-

resident signal processing such as acoustic echo cancellation and noise suppression
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Figure 2. Kinect software architecture [4].

In normal operations, a Kinect device needs to be con-
nected to the XBOX 360 or PC via USB port for the access
and manipulation of the data streams provided by Kinect.
Instead a Kinect emulator can be used, where a Kinect is not
needed physically. An emulator takes the form of a hardware
device and duplicates (or emulates) the functions of the
device in a different second device, so that the emulated
behavior closely resembles the behavior of the real device
or system. Using an emulator does not need the presence
of the original device. So, using a Kinect emulator, we
can record data one time and use the recorded data when
Kinect is not available to us. Reproducing results is easier in
Kinect emulator and it does not constraint one to real-time
performance. It allows one to record Kinect data and switch
between live and recorded modes easily and also reduces the
tedious job of giving the same human input several times
during software development.

To construct an emulator we have to capture these streams
of data and store it into proper format so that later, users can
use these data as if they have got these from a Kinect device.
We represent the complete software architecture of Kinect
in Fig. 2. Our contribution has been implemented between
the application and video and audio components shown by
the big red arrow in Fig. 2.

IV. PRELIMINARIES

In this section, we describe the basic technologies we
have used in our study. We describe our approach in data
compression and decompression, key frame, etc.

A. Data compression

In computer science and information theory, data com-
pression, source coding, or bit-rate reduction involves en-
coding information using fewer bits than the original rep-
resentation. Compression can be either lossy or lossless.
Lossy compression reduces bits by identifying marginally
important information and removing it. Lossless compres-
sion reduces bits by identifying and eliminating statistical
redundancy. No information is lost in lossless compression.
Thus when Lossless compressed data is decompressed, it
is possible to get back to the original data, but on the
other hand this claim is not true for the lossy compression.
We have used lossless data compression in our emulator to
produce the exact same data that a real Kinect device could
have offered.

B. LZW Compression/Decompression:

This is the most commonly used and the simplest type of
compression and decompression algorithm. There are mainly



two types of implementations in LZW compression - static
and dynamic compression.

1) Static Compression:: In static compression, we use a
fixed number of bits to represent every character while com-
pressing. The total number of bits we have at our disposal
is 32, which gives a total of 232, that is, 4, 294, 967, 295
possible entries in the dictionary. But in almost all cases
we do not get that much entries, so in most of the cases,
we use a constant number of bits and commonly set the
number of bits as 14. For example, in 14 bit format, ‘A’ can
be represented by 00000001000001.

2) Dynamic Compression:: Dynamic compression
changes the number of bits used to compress the data.
It starts with 9 bits for each new value, and goes up
until it reaches 32 or until the file ends. In this type of
compression we can set the size of the dictionary we have.
The dictionary begins with all the 256 ASCII codes. In
dynamic compression there is only one leading 0 in front
of each number. For example, in dynamic compression, ‘A’
can represented as 001000001.

C. Key frame:

In video compression, a keyframe, also known as an Intra
Frame, is a frame in which a complete image is stored in the
data stream. In video compression, only changes that occur
from one frame to the next are stored in the data stream, in
order to greatly reduce the amount of information that must
be stored. This technique capitalizes on the fact that most
video sources (such as a typical video stream from Kinect)
have only small changes in the image from one frame to the
next. Whenever a drastic change to the image occurs, such
as when the background scene changes, a keyframe must
be created. The entire image for the frame must be in the
output when the visual difference between the two frames
is so great that representing the new image incrementally
from the previous frame would be more complex and would
require even more bits than reproducing the whole image.
Aside from the keyframes, we need to store the difference
in color information from its preceding frame which, when
compressed can result in very small data size. We have used
this concept in our emulator to reduce the storage file size
for raw video data. To increase efficiency, we generated the
LZW dictionary for keyframes only and used it for other
frames. It reduced our algorithmic complexity greatly and
made our approach applicable in real-time.

D. Retrieving Data Streams from the Kinect Device

User applications can get the latest frame of image/depth/
skeletal data by calling a frame retrieval method and passing
a buffer. If the latest frame of data is ready, it is copied into
the buffer. If our code requests frames of data faster than
new frames are available, we can choose whether to wait
for the next frame or to return immediately and try again
later. The NUI API never provides the same frame of data

more than once. Applications can use either of the following
two usage models:

1) Polling Model: When using the polling model, the
application code opens the stream first. It then requests a
frame and specifies how long to wait for the next frame of
data (between 0 and an infinite number of milliseconds).
The request method returns when a new frame of data is
ready or when the wait time expires, whichever comes first.
Specifying an infinite wait causes the call for frame data to
block and to wait as long as necessary for the next frame.

When the request returns successfully, the new frame is
ready for processing. If the time-out value is set to zero,
the application code can poll for completion of a new frame
while it performs other work on the same thread. For exam-
ple, a native C++ application calls NuiImageStreamOpen()
method to open a color or depth stream and omits the op-
tional event. Managed code calls the ImageStream.Open()
function. To poll for the color and depth frames, native
C++ applications call NuiImageStreamGetNextFrame()
and managed code calls ImageStream.GetNextFrame().

2) Event Model: The event model supports the ability to
integrate retrieval of a image/depth/skeleton frame into an
application engine with more flexibility and more accuracy.
In this model, C++ application code passes an event handle,
for example, to NuiImageStreamOpen() method for image
data. When a new frame of image data is ready, the event
is signaled. Any waiting thread wakes and gets the frame of
skeleton data by calling NuiImageGetNextFrame(). During
this time, the event is reset by the NUI Image Camera API.

In the .NET model, Managed code uses the event mode
by hooking a Runtime.DepthFrameReady() method for the
depth stream or Runtime.ImageFrameReady() method for
the image stream to an appropriate event handler. When a
new frame of data is ready, the event is signaled and the
handler runs and calls ImageStream.GetNextFrame() to
get the frame.

V. SKELETON DATA

Here in this section we present our approach on storing
and retrieving the skeleton frame using our Kinect emulator.
We get the position of each body joint of the person under
consideration and then record it in the permanent storage
devices, for example, the hard disk drive.

We used the event driven technique to retrieve the
skeleton data and save it to file. When a skele-
ton frame is available and an event is triggered,
the void Nui GotSkeletonAlert() is invoked and an
instance of NUI SKELETON FRAME is retrieved from
NuiSkeletonGetNextFrame() function which contains the
coordinate of the body points and then the whole frame is
stored. We also record the time stamp difference from the
previous skeleton frame.

When retrieving this data and redirecting them to our
application instead of using the real Kinect device, we use



a thread to fetch data from that recorded file according
to timestamp and invoke that particular event with event
parameters passed manually in the same time gap as in
the original data. In this way the user code remains almost
transparent and only required to be changed in the Kinect
initialization part, where instead of Kinect initializing, we
are initializing our own thread for fetching data. The process
is documented in [7].

VI. VIDEO DATA AND DEPTH DATA

In the scope of void Nui GotVideoAlert() function, we
retrieve the video data and persist it. But there are several
issues we had to deal with while saving the video data. The
Issues are listed below:

• As Kinect device outputs the video frame in the mem-
ory and the operation of writing a frame from the
memory to a file is much slower than then frame
generation rate of the Kinect device, we used a buffer to
deal with the problem. Kinect writes data in the buffer
and a thread reads data from the buffer and writes to
the hard disk block by block.

• The size of the file where raw video frames are per-
sisted grows so fast that in few minutes it crossed 4 or
5 GB in size. So we had to compress the frames. In that
case we used LZW compression algorithm to compress
the data as discussed earlier. We could not use estab-
lished compression standards like .mp4, .flv, or .mpeg
as they will compress the frames with their proprietary
algorithms, can drop frames if necessary, includes their
own metadata, and they are not lossless. We need to be
very precise with the timestamp and metadata of the
frames we store so that we can reproduce it exactly as
it was recorded in the first place. So we used our own
code for storing video data.

• Writing frames in file itself is a relatively slow oper-
ation and the compression process make it slower and
it hugely influences the overall performance(frame rate
per second).

• The Dictionary is created only when a keyframe comes
and this made an viewable impact in performance but
still we require to improve it further.

• So finally we decided not to record all the frames but to
skip some of them and thus made it faster. The whole
process is shown on Figure 3.

Similar as for the video data, we retrieve the depth data
from the Nui GotDepthAlert() function and persist it.
When a depth frame event occurs, Nui GotDepthAlert()
retrieves the ready frame from the capture engine.

For both video and depth data, we recorded the received
frames along with time stamps. So the retrieving thread,
when using in our applications can invoke event calls with
precise timing as discussed in the skeletal data section
(Section V).

Table II
RIFF HEADER

Positions Field
Name

Size (Bytes) Sample
Value

1-4 chunkID 4 “RIFF”
5-8 ChunkSize 4 640022
9-12 Format 4 “WAVE”
13-16 subChunk1ID 4 “fmt”
17-20 subChunk1Size 4 16
21-22 AudioFormat 2 1
23-24 NumChannels 2 1
25-28 SampleRate 4 16000
29-32 ByteRate 4 32000
33-34 BlockAlign 2 2
35-36 BitsPerSample 2 16
37-40 subChunk2ID 4 “data”
41-44 subChunk2Size 4 640000
44 data subChunk2Size Audio Stream

VII. AUDIO DATA

In this section, we describe our approach to store and re-
trieve the audio data from Kinect. As previously mentioned,
Kinect audio features are supported by a microphone array.
Generally the microphone array consists of 4 microphones.
First we describe how use the Audio API to capture the
audio stream and then describe the method we use to store
source information.

A. Our Approach

Our goal is to capture the audio stream from the Kinect
sensor’s microphone array without losing any information.
We have to store the audio stream and the information
about beam forming and source localization with proper
synchronization with the original stream as if it comes
from the microphone array when someone use the stored
audio data later. In our approach we write the audio data
in “.wav” format because it is a standard audio format used
in Windows and we have stored the source information in a
separate file. In our approach we save the beam angle, source
angle, and the level of confidence of source angle when there
is a change in either angle with proper timestamps.

B. Capture the Audio Stream

First, we have to create an object to manage the Kinect’s
microphone array. Microsoft has provide a class in its
NUI API named “KinectAudioSource” to manage the
functionality for microphone array. We can use it to cap-
ture the audio stream and write the data stream into
a “.wav” file. We made the thread priority highest for
this program. To start the recoding we call the function
KinectAudioSource :: Start() and we record the audio
stream until the total recoding time passes. Here we record
the audio at a sample rate of 16 KHz. The RIFF (Resource
Interchange File Format) format was created by Microsoft
and is used by many applications like Windows, Corel Draw,
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etc. We present the RIFF format and the values we used in
its header in Table II.

C. Storing Audio Information

In this section we describe how we store the audio source
information. We construct a class named AudioData for
this purpose. The short description for AudioData is given
below:
class AudioData{public :

double sourceAngle, beamAngle, confidenceSource;
int64 ticks;};

Here the sourceAngle, beamAngle attributes are self
explanatory. The confidenceSource is the confidence level
of the source ranging from 0 to 1 as provided by the
NUI API specifications. The last attribute ticks is the
elapsed ticks after the previous entry of the changing of
source or beam angle. A single tick represents one hundred
nanoseconds or one ten-millionth of a second. There are
10,000 ticks in a millisecond as specified in the .NET
documentation. The data type for tick is 64 bit integer for
storing large value. Now we monitor the source direction.
When there is change in the either angle we store in the
file with the time elapsed after the last change. In this way
we can store the complete information of the audio data.
We can retrieve the audio information in the same way for
video and skeleton data, as mentioned in earlier sections.

VIII. CONCLUSION

In this paper we have presented a novel approach for
making a Kinect device emulator for Windows platform. Our
system can record raw data streams from a real Kinect device
and later everyone can use that offline data to experiment
with their own application without having a Kinect device.
This will greatly enhance group research and development

activities as we no longer require a physical Kinect device
for every member of the group. Users worldwide can down-
load our emulator code with documentation to use it from
[7]. A video demonstration showing the usability of our
emulator can be found in [8]. We are now looking forward
to improve our emulator further from the user feedbacks we
receive.
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