
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 1

From Theory to Code: Identifying Logical Flaws
in Cryptographic Implementations in C/C++∗

Sazzadur Rahaman, Haipeng Cai, Omar Chowdhury and Danfeng (Daphne) Yao, Senior Member, IEEE

Abstract—Cryptographic protocols are often expected to be provably secure. However, this security guarantee often falls short in
practice due to various implementation flaws. We propose a new paradigm called cryptographic program analysis (CPA) which
prescribes the use of program analysis to detect these implementation flaws at compile time. The principal insight of the CPA is that
many of these flaws in cryptographic implementations can be mapped to the violation of meta-level properties of implementations. A
program property that is necessary to realize a cryptographic property is referred to as meta-level property. We show that violations of
these meta-level properties can be identified at compile-time that can serve as sufficient evidence of the encompassing flaws. We
investigated existing literature on cryptographic implementation flaws and derived 25 corresponding meta-level properties. To
instantiate the abstract paradigm of CPA, we develop a specification language based on deterministic finite automaton (DFA) and show
that most of the meta-level properties can be expressed in terms of our language. We then develop a tool called TAINTCRYPT which
uses static taint analysis to identify meta-level property violations of C/C++ cryptographic implementations at compile-time. We
demonstrate the efficacy of TAINTCRYPT by analyzing open-source C/C++ cryptographic libraries (e.g., OpenSSL) and observe that
TAINTCRYPT could have helped to avoid several high-profile flaws. We also evaluated TAINTCRYPT on 5 popular applications and
libraries, which generated new security insights. The experimental evaluation on large-scale projects indicates the scalability of our
approach.

Index Terms—Cryptographic code; information flow analysis; static tainting; security vulnerability

F

1 INTRODUCTION

Cryptographic protocols/constructs are often used as the building
block for providing robust security guarantees in many appli-
cations (e.g., HTTPS [2], DNSSEC [3], SMTP-over-TLS [4]).
While implementing or employing these cryptographic protocols,
one hopes to replicate the security guarantees provided by their
theoretical cryptographic counterparts, that have been proven to
be secure. This seemingly straightforward goal of implementing
applications with provably secure guarantees, however, is often
unaccomplished as evident in the recent high-profile outbreaks
of cryptography-related vulnerabilities in widely used network
libraries and tools (e.g., heartbleed vulnerabilities in OpenSSL [5]
and seed leaking in Juniper Network [6]).

The lack of provable security guarantees in applications re-
lying on cryptography can be often attributed to a combination
of the following reasons: (1) The application uses a vulnerable
cryptographic library or an insecure cryptographic construct/pa-
rameter (e.g., MD5 hash function); (2) A cryptographic construct
is used without satisfying its required precondition (e.g., initial-
ization vector not being random); (3) The correct APIs of the
underlying cryptographic library are not invoked at all, not invoked
in the prescribed order, or invoked with improper arguments
(e.g., hostname validation is not performed after X.509 certificate
chain validation); (4) The application suffers from logical/run-

∗A preliminary version of the work appeared in the Proceedings of the IEEE
Secure Development Conference, 2017 [1].

• Sazzadur Rahaman and Danfeng (Daphne) Yao are with the Department
of Computer Science, Virginia Tech. Haipeng Cai is affiliated with the
School of Electrical Engineering and Computer Science, Washington
State University. Omar Chowdhury is affiliated with the Department of
Computer Science, The University of Iowa.
E-mail: sazzad14@vt.edu, hcai@eecs.wsu.edu, omar-
chowdhury@uiowa.edu, danfeng@vt.edu.

time vulnerabilities (e.g., buffer overflow). The impact of such
insecurity for a critical application can affect millions of devices
that execute the vulnerable implementation, potentially rendering
millions of users vulnerable to adversarial attacks resulting in the
loss of user privacy, vendor reputation, or even financial loss. The
main objective of the paper is to develop techniques for aiding
developers to avoid such pitfalls in their applications.

This paper contributes to this overarching vision by presenting
a new paradigm called the cryptographic program analysis (CPA)
which prescribes the use of program analysis approaches to
develop compile-time insecurity checking and security enhancing
solutions. Most of the existing work in this domain either focus
on precisely detecting cryptographic API misuses by the applica-
tions [7], [8], [9], [10], [11], [12] or identifying protocol-specific
vulnerabilities in the cryptographic libraries [13], [14], [15], [16],
[17], [18]. These relevant efforts, however, leave the void of not
assisting developers to avoid other kinds of pitfalls, for instance,
their use of insecure cryptographic constructs (e.g., ECB mode
in symmetric ciphers) or parameters (e.g., RSA public-exponent
3 [19]).

The key insight that enables CPA to effectively aid developers
to have a robust implementation is that many of the aforemen-
tioned pitfalls can be mapped to the violations of meta-level
properties of the implementations. A program property that is
necessary to realize a cryptographic property is referred to as
meta-level property. The violations of the meta-level properties
cannot only be checked during compile-time but also their viola-
tions can serve as sufficient evidence of the cryptographic flaws
they encompass. For explaining meta-level properties, let us take
a fictitious application that processes commands from a client.
For ensuring the integrity of the submitted command, it uses a
8-byte message authentication code (MAC) scheme. Let us also
assume that the MAC scheme enjoys the desired security property



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 2

of resistance against existential forgery [20].
During its execution, whenever the application receives a

plaintext command m and its MAC rmacmk , before processing
the command m it checks the validity of the MAC rmacmk . When
the MAC verification fails, it returns MAC FAIL warning message;
otherwise, it returns OK. For verifying the MAC, it first constructs
the MAC of m using its key k. Suppose the constructed MAC
is cmacmk . It then checks to see whether cmacmk =? rmacmk
by comparing each byte of cmacmk with rmacmk ; halting the
comparison by sending MAC FAIL when the first mismatch is
observed. It is evident that through the observation of the response
message and the timing of the received response message,

An dversary—who does not know the cryptographic key—can
forge the MAC of a new message with only 8 × 256 attempts
instead of 2568. Based on prior work by [21], [22], [23], we
speculate that this flaw can be easily mapped to the following
meta-level property violation: “No early termination during the
comparison of cryptographic payloads”. In the similar vein, the
infamous Bleichenbacher’s padding oracle attack against RSA can
be mounted due to the violation of another meta-level property:
“The same, generic error message should be sent whenever the
protocol experiences an error condition”.

Many of the meta-level properties can be specific to crypto-
graphic constructs/protocols. To enable the specification of such
meta-level properties, we provide a deterministic finite automa-
ton (DFA) based language. We also develop a tool dubbed
TAINTCRYPT that leverages static information flow analysis to
identify the violations of meta-level properties in C/C++ imple-
mentations. Our static analysis is both path- and context-sensitive,
hence capable of enforcing a rich set of cryptographic properties
precisely (i.e., small false positives).

Our work targets and addresses the fundamental challenge
of mapping theoretical cryptographic concepts to practical code
structures and security-related behavioral properties, which can
potentially enable a wide range of code-based security analysis for
cryptographic software. This work thus serves as an essential first
step towards performing systematic, automated analyses of crypto-
graphic libraries and their applications of millions of lines of code.
Although static information flow analysis itself has been studied
as a general methodology for reasoning about cryptographic code
security [21], [22], [23], it remains untapped how this general
technique can be leveraged to build a unified tool to detect a wide
range of cryptographic vulnerabilities.
Contributions: In summary, this paper makes the following
contributions:

• We conducted an in-depth exploratory study of code-level
security vulnerabilities in cryptographic programs, which
resulted in a taxonomy of 25 classes of exploitable vulner-
abilities in cryptographic implementations that boil down
to 12 distinct types of security attacks. Our exploratory
study is based on (1) surveying the literature of existing
cryptographic attacks; (2) observing the change-logs of
OpenSSLs releases (Section 3). The purpose is to cover as
many interesting attacks as possible within one program
analysis tool so that developers can routinely use this tool
to screen their code.

• We derived 25 enforceable rules (meta-level properties)
from our vulnerability study and taxonomy, which address
6 out of the total of 12 security attacks identified. We
further showed that static analysis can be used for 23 of

these rules to capture the sufficient condition for proving
if a property holds or not.

• We identified compile-time security checking of cryp-
tographic implementations as an unexplored problem in
software security and proposed a deterministic finite au-
tomaton (DFA) based language to express meta-level cryp-
tographic properties that can be statically checked using
static analysis. Further, we demonstrated our technique by
developing a tool named TAINTCRYPT that enforces 15
security rules we derived from our exploratory study.

• We implemented TAINTCRYPT for C/C++ programs as
a practical tool based on LLVM and used the tool to
evaluate our CPA technique against real-world crypto-
graphic software. We demonstrated the effectiveness and
efficiency of our technique and thus showed how static
information flow analysis can be exploited to diagnose a
large variety of cryptographic vulnerabilities in large-scale
libraries like OpenSSL and critical software systems built
on such libraries. We also evaluated TAINTCRYPT on 5
popular tools and libraries, which generated new security
insights. Our experimental evaluation on large code bases
indicates the scalability of our approach.

2 MOTIVATION AND THREAT MODEL

To motivate this work, in this section, we present few examples of
cryptographic vulnerabilities from real-world software. Then, we
present our threat model.

2.1 Motivating Examples
Like other types of security vulnerabilities, one of the common
causes of vulnerable information flows in cryptographic imple-
mentations is their inclusion of basic programming errors.

Example 1. For example, consider the code snippet excerpted
from the core ScreenOS 6.2 PRNG functions [6] in Figure 1. In
this case, the shared use of global variables (prng_temporary
and prng_output_index) causes the leak of sensitive data
prng_seed (Line 5 in prng_reseed) in the immediate post-
seed (Line 16) output of function prng_generate. As another
case of this kind, a memory disclosure vulnerability called heart-
bleed in OpenSSL (e.g., CVE-2014-0160) had the potential of
leaking sensitive information (e.g., cryptographic keys, and PRNG
seeds). In fact, vulnerabilities and security threats rooted in similar
coding errors are commonly found in real-world cryptographic
software. Dealing with these issues can be particularly challenging
as oftentimes addressing one problem can lead to other problems
due to the bug fixes [24]. As an essential step towards overcoming
such challenges, we will show how static information flow analysis
can be employed to detect various types of sensitive data leakage
in cryptographic code (Section 4).

Example 2. The first example as shown in Figure 1 illustrates
the cases in which the vulnerable cryptographic information flows
could be manually inspected. In large-scale projects that involve
hundreds of developers, however, it is very difficult or imprac-
tical to check each of the information flow paths manually. For
example, OpenSSL (as of commit 5748e4dc) consists of 7, 157
functions, totaling 325, 000 lines of code (LoC). In addition,
this software project involved 323 collaborating contributors.
For sizable cryptographic software, manual approaches would
not be feasible whereas automated security defense/enforcement
mechanisms are mandatory.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 3

1 void prng reseed(void) {
2 ...
3 if (dualec generate(prng temporary, 32) != 32)
4 error handler("ERROR: unable to reseed", 11);
5 memcpy(prng seed, prng temporary, 8);
6 prng output index = 8;
7 memcpy(prng key, &prng temporary[prng output index], 24);
8 prng output index = 32;
9 }
10
11 void prng generate(int is one stage) {
12 ...
13 prng output index = 0;
14
15 if (!one stage rng(is one stage)) {
16 prng reseed();
17 }
18
19 for (; prng output index <= 0x1F; prng output index += 8) {
20 // FIPS checks...
21 x9 31 generate block(time, prng seed, prng key, prng block);
22 // FIPS checks...
23 memcpy(&prng temporary[prng output index], prng block, 8);
24 }
25 }

Fig. 1: Excerpt from a real-world cryptographic pro-
gram (the core ScreenOS 6.2 PRNG functions [6]), where
prng_temporary and prng_output_index are global
variables. When prng_reseed is called (Line 16), the loop
variable prng_output_index in function prng_generate
is set to 32, causing prng_generate to output sensitive data
prng_seed at Line 5.

2.2 Threat Model

In this paper, we focus on two main categories of threats associated
with cryptographic code that are relevant to vulnerable information
flows. These threats thus could be addressed through properly
designed static information flow analyses.

• Library-level coding vulnerabilities. Coding errors (such
as premature exit of a for loop due to an incorrect loop
condition [6]), vulnerabilities (such as key leakage), con-
figuration issues and misuses (such as insecure storage
of secrets) in third-party cryptographic libraries are par-
ticularly dangerous, as the code is usually widely used,
oftentimes in commercial systems. As a consequence,
security threats at this level can potentially put at risk a
range of applications that are built on vulnerable libraries.

• Application-level implementation vulnerabilities. Ap-
plication code varies (e.g., Android apps, client-side soft-
ware, web applications), and there is a large variety in
them. Vulnerabilities in this category are mostly related
to API misuses—for example, erroneously invoking or
configuring SSL library APIs [25], using obsolete crypto
primitives, or intentionally disabling security mechanisms.

We assume that developers of both third-party cryptographic
libraries and higher-level cryptographic applications could write
vulnerable code. Within a single tool, we aim to cover as many
vulnerabilities as possible, which can be used by developers who
are clueless, as well as developers who are more experienced but
may still write insecure code (e.g., PRNG seed leakage [1] or
Heartbleed [5]). We do not target side-channel vulnerabilities (e.g.,
RSA padding oracle [26]) since our analysis is static in nature,

while static analysis is inherently limited in dealing with those
intrinsically dynamic issues [23]. However, we show that some of
the straightforward cases (e.g., early termination or exposing the
error conditions can be mapped within our general framework.

3 CRYPTO VULNERABILITIES

In this section, we present different state-of-the-art cryptographic
vulnerabilities. We also categorize them into several broader
groups. Further, in Table 1, we present a set of security rules that
ought to be enforced to defend crypto implementations against
these vulnerabilities. The identification of the vulnerabilities are
based on the exploratory study. Cryptographic vulnerabilities are
included from the state-of-the-art cryptographic vulnerabilities.
Programming errors are included by observing the change-logs
of various OpenSSL’s releases to find interesting cases. This types
of exploratory study are not new in the literature [8], [9], [10],
[11].

3.1 Chosen-plaintext attacks on IVs
Electronic Codebook (ECB) mode encryption is not semanti-
cally secure [27]. Bard et al. [28] showed that, the determinism
of initialization vectors (IVs) can make cipher block chaining
(CBC) mode encryption insecure too. However, the vulnerabil-
ity remained merely hypothetical, until late 2011 when Doung
and Rizzo [29] demonstrated a live attack (known as BEAST)
against PayPal by exploiting the vulnerability. Row 1 of Table 1
corresponds to the security enforcement rule to avoid the use of
ECB mode cipher and Row 2 corresponds to the attacks related to
the predictability of IVs in CBC mode encryption. In Section 4,
we present static information flow analysis based mechanisms to
detect these vulnerabilities.

3.2 Attacks on PRNG
Historically, random number generators have been a major source
of cryptographic information flow vulnerabilities [30], [31], [32].
The reason is that many of the cryptographic schemes rely on a
cryptographically secure random number generator for the key and
cryptographic nonce generation (Row 11 of Table 1). A random
number generator can be exploited such that its behaviors are made
predictable. When these attacks occur, such vulnerabilities as the
use of predictable seeds (Row 9) and backdoor-able PRNG (Row
10) can be manipulated by an attacker as a backdoor to break the
security of the cryptographic applications that use the randomly
generated numbers resulted from the PRNG.

The NIST standard for PRNG referred to as Dual EC PRNG,
has been considered both biased and backdoor-able by the security
community [33]. Researchers have shown that the backdoor-ability
of Dual EC PRNG was the main reason behind the Juniper incident
in 2015 [6], and they also revealed how the cascade of multiple
vulnerabilities due to programming errors led to the leak of PRNG
seeds in Juniper Network (Row 19). We will demonstrate how the
proposed static program analysis can be leveraged to detect such
vulnerabilities (Section 4).

3.3 Use of Legacy Ciphers
There are several attacks based on the use of legacy ciphers, where
cryptanalysis is feasible. For example, the Logjam attack [34]
allows a man-in-the-middle attacker to downgrade vulnerable TLS
connections to 512-bit export-grade cryptography. In [35], the



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 4

TABLE 1: Enforceable security rules in different cryptographic implementations. * indicates a rule focusing on data integrity and #
indicates a rule focusing on data secrecy protection. Here, CPA and CCA stand for chosen plaintext attack and chosen ciphertext attack,
respectively. (X) indicates that the rule is implemented in TAINTCRYPT.

Attack Type Enforceable Rule Crypto property Static Analysis Tool

CPA (1) Should not use ECB mode in symmetric ciphers* Secrecy Taint Analysis (X)
(2) IVs in CBC mode, should be generated randomly* Secrecy Taint Analysis

CCA

(3) Validity of ciphertexts should not be revealed in symmetric ciphers Secrecy Program Dependence Analysis
(4) Validity of ciphertexts should not be revealed in RSA Authentication Program Dependence Analysis
(5) Should not use export grade or broken asymmetric ciphers* Authentication Data Flow Analysis
(6) Should not use 64 bit block ciphers (e.g., DES, IDEA, Blowfish)* Secrecy Taint Analysis (X)
(7) Should not allow early termination (timing side channels) Secrecy Program Dependence Analysis
(8) Should not allow cache-based side channels Secrecy –

Predictability
(9) PRNG seeds should not be predictable* Randomness Taint Analysis
(10) Should not use untrusted PRNGs* Randomness Taint Analysis (X)
(11) Nonces should be generated randomly* Randomness Taint analysis (X)

Memory Corruption

(12) Should not allow double “free()” exploit* Determinism Taint Analysis (X)
(13) Should not have type truncation (e.g., 64 bit to 32 bit integers) Determinism Data Flow Analysis
(14) Should not leave any wild or dangling pointers Determinism Data Flow Analysis
(15) Should guard against Integer overflow* Determinism Taint Analysis
(16) Should not write to a memory (buffer) beyond its length* Determinism Taint Analysis

Crash (17) Should Check return values of untrusted codes/libraries* Availability Taint Analysis
(18) Division operations should not be exposed to arbitrary inputs* Availability Taint Analysis

Data Leak (19) Should not leak sensitive data# Secrecy Taint Analysis (X)

Key Leak (20) Should not use predictable/constant cryptographic keys Secrecy Data Flow Analysis

Memory Leak (21) Should not leave allocated memory without freeing Availability Data Flow Analysis

Memory Disclosure (22) Should not read to a memory beyond its length (heartbleed)* Secrecy Taint Analysis (X)

Hash Collision (23) Should not use broken hash functions* Integrity Taint Analysis (X)

Stack Overflow (24) Cyclic function calls should not depend on untrusted inputs Availability Program Dependence Analysis

State machine Vulnerabilities (25) Should detect illegal transitions in protocol state machines Authentication –

authors demonstrated the recovery of a secret session cookie by
eavesdropping HTTPS connections. Prior research also demon-
strated that the use of weak hash functions (e.g., MD5 or SHA-1 in
TLS, IKE, and SSH) might cause almost-practical impersonation
and downgrade attacks in TLS 1.1, IKEv2, and SSH-2 [36]. These
attacks are characterized in Table 1: Rows 5 (asymmetric cipher),
6 (symmetric cipher), and 23 (hash functions). The correspond-
ing vulnerabilities can be detected using our static analysis as
described in Section 4.

3.4 Padding Oracles

Padding Oracle vulnerabilities can be categorized into two classes:
(1) padding oracles in symmetric ciphers and (2) padding oracles
in asymmetric ciphers.

Padding oracles in symmetric ciphers. Vaudenay et al. [37]
presented a decryption oracle out of the receiver’s reaction on
a ciphertext in the case of valid/invalid padding of CBC mode
encryption. In SSL/TLS protocol, the receiver may send a decryp-
tion failure alert, if invalid padding is encountered. By exploiting
this information leaked from the server and cleverly changing the
ciphertext, an attacker is able to decrypt a ciphertext without any
knowledge of the key. “POODLE” [38] is a padding oracle attack
that targets CBC-mode ciphers in SSLv3. “Lucky Thirteen” [39]
is also a padding oracle attack on CBC-mode ciphers, exploiting
the timing side channel vulnerabilities in victims that do not check
the MAC for badly padded ciphertexts. In Row 3 of Table 1, we
summarize padding oracle attacks on CBC mode encryptions.

Padding oracles in asymmetric ciphers. In [26], Bleichen-
bacher presented a stealthy attack on RSA based SSL cipher suites.
The author utilized the strict structure of the PKCS#1 v1.5 format
and showed that it is possible to decrypt the PreMasterSecret
in a reasonable amount of time. There are numerous examples of
using “Bleichenbacher padding oracle” to recover the RSA private
key in different settings [40], [41], [42], [43], some of which use
timing side channels to distinguish between properly-formed and
malformed ciphertexts [44], [45].

In [21], authors proposed a data-flow analysis based technique
to detect padding oracles due to non-constant-time implemen-
tations. In [22], authors proposed an efficient representation of
Program Dependence Graph which can be utilized to verify
constant-time implementations.

We characterize padding oracle attacks in (Rows 3 and 4)
of Table 1. Although, results from [21] and [22] indicates that
padding oracles from a class of non-constant-time implementation
can be detected using program dependence graph analysis. How-
ever, verifying constant-time implementations to eliminate these
side-channel exploitations is notoriously difficult, because of its
indirect and complex dependency on program control flows [23].

3.5 Side-Channel Exploitations

We categorize side-channel attacks in cryptographic implemen-
tations into two classes: (1) timing-based (2) cache-based side-
channel attacks.

Timing-based side-channel attacks. Brumley et al. [46] pre-
sented a timing based side channel attacks on OpenSSL’s imple-



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 5

mentation of RSA decryption. In [47], the authors identified vul-
nerabilities to a timing attack in OpenSSL’s ladder implementation
for curves over binary fields. Exploiting these vulnerabilities, the
authors demonstrated stealing the private key of a TLS server that
authenticates with ECDSA signatures. Timing side-channels are
hard to detect in general. However, some relatively straightforward
cases, e.g., timing side channels due to early termination can be
detected using program dependence analysis. Row 7 of Table 1
summarizes such timing-based side-channel attacks.

Cache-based Side-channel attacks. After the introduction of
cache-based side-channels [48], researchers demonstrated the ex-
istence of side-channels in various cryptographic implementations
(e.g., AES [49] and DSA [24]). In [24], the authors presented
a cache-based side-channel to compromise the OpenSSL’s im-
plementation of the DSA signature scheme and recovered keys
in TLS and SSH cryptographic protocols. Row 8 of Table 1
characterizes cache-based side-channel attacks in cryptographic
implementations.

As discussed in Section 3.4, detecting side channels is an
intrinsically difficult problem. TAINTCRYPT cannot detect timing
side-channel vulnerabilities. TAINTCRYPT cannot detect these
side-channel vulnerabilities.

3.6 State Machine Vulnerabilities

Attacks exist which exploit vulnerabilities in the protocol
state machines of different cryptographic protocols [17], [18].
For example, the CCS injection attack [50] on OpenSSL’s
ChangeCipherSpec processing vulnerability allows malicious
intermediate nodes to intercept encrypted data and decrypt them
while forcing SSL clients to use weak keys that are exposed to the
malicious nodes.

Different cipher-suits in TLS use different message sequences.
In SKIP-TLS [18], TLS implementations incorrectly allow some
messages to be skipped even though they are required for the
selected cipher suite. The FREAK attack [51] has led to a
server impersonation exploit against several mainstream browsers
(including Safari and OpenSSL-based browsers on Android). Like
most of the exploits of this category, FREAK also targets a class
of deliberately chosen weak, export-grade cipher suites. These
attacks are summarized in Row 25 of Table 1.

Most of the techniques [16], [17], [18] that detect vulnerabil-
ities due to state machine exploitations use fuzzing-based input
generation mechanisms based on dynamic program analyses. In
contrast, building practical static analysis based detection mech-
anisms have yet to be investigated. A key challenge towards
static detection lies in the fact that as the protocol’s internal
states increase, the computational complexity will accordingly rise
exponentially.

3.7 Programming Errors

Programming errors have been a major source of vulnerabilities in
C/C++ security software [52]. These vulnerabilities ranged from
improper memory use to improper memory management. Exam-
ples of improper memory use include memory over-read (e.g.,
heartbleed attack [5]) (Row 22 of Table 1), memory over-write
(e.g., buffer overflow [53], [54]) (Row 16), integer overflow [52]
(Row 15), type truncation (Row 13)), and stack overflow1 (Row

1. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0228

24). Example vulnerabilities that boil down to improper mem-
ory management are malloc without free (Row 21), double
free [55] (Row 12), and dangling pointers (Row 14).

In addition, prior studies [8], [27] have shown that other
programming errors, such as those that are due to careless han-
dling of cryptographic keys (e.g., using hard-coded keys), are
also prevalent in the wild (Row 25). In Section 4, we present
how static program analysis can be used to detect cryptographic
vulnerabilities that are induced by various programming errors.

4 SECURITY RULES AND ENFORCEMENT

In this section, we first present the enforceable security rules we
derived against the various cryptographic code security vulnera-
bilities described in Section 3. Then we discuss how various types
of static analysis techniques can be used to detect the violations
of these rules. Once a technique is fixed, then we elaborate
on how these rules can be expressed in a deterministic finite
automaton (DFA) based language for enforcement. In particular,
we demonstrate how security-aware testing can be enabled to
enforce these rules via static code analysis.

q0 q1 q2

q3

source()
filter()

propagator()

propagator()
filter()

sink()

Fig. 2: Finite state machine (FSM) of taint analysis.

Enforceable security rules.
By analyzing different genres of attacks, we have identified

25 categories of cryptographic vulnerabilities and corresponding
security rules that should be enforced in a cryptographic program
to ensure different security properties, as shown in Table 1. These
25 categories of attacks fall in 12 higher-level attack classes
(e.g., memory corruption and data leak) listed in the first column.
Note that, the rules from memory corruption, crash, memory leak,
and stack overflow are not cryptographic program specific, hence
applicable for general program implementations. However, the
violation of these rules in cryptography implementations causes
violations in some of the cryptographic properties. To provide
a one-stop service to secure cryptography implementations, we
included these rules in our threat model.

4.1 Mapping Rules with Program Properties

23 out of the 25 security rules are enforceable through static
code analysis. To use static analysis effectively for enforcing
cryptographic rules we have to map cryptographic rules (meta-
level properties) with static analysis properties. This mapping
aims to capture sufficient condition of proving the violation
of cryptographic rules. Since such a violation might not imply
an exploitable vulnerability, thus it does not capture necessary
conditions.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 6

4.1.1 Detection with taint analysis
Next, we show that 15 out of these 23 rules can be enforced using
static taint analysis, which requires mapping these rules to taint
analysis properties. Specifically, we define the properties of taint
analysis and map these rules with taint analysis properties.

TABLE 2: Transition functions (δ) of the finite state machine
(FSM) presented in Figure 2.

Inputs

source() propagator() filter() sink()

St
at

es

q0 q1 – – –
q1 – – q2 q3
q2 – q1 – –
q3 – – – –

Taint analysis typically works by identifying dangerous flows
of untrusted inputs into sensitive destinations [56]. Generally, a
taint analyzer refers to four types of functions to identify these
flows: sources, propagators, filters and sinks. A source is a func-
tion that produces an untrusted input, while a sink is a function that
consumes an untrusted input sending it to a sensitive destination.
A propagator is a function that propagates the untrusted data
from one point of the program (via a variable) to another, while a
filter is a function that purifies an untrusted variable and makes it
trustworthy. Using taint analysis we can check the following two
properties in a program.

• Integrity. The integrity property of a program regards
to whether untrusted values (i.e., values generated from
sources) can reach and modify trusted placeholders (i.e,
sinks).

• Confidentiality. One may also be interested in the dual
property of integrity such as confidentiality (i.e., whether
values generated from sensitive sources can reach to un-
trusted sinks).

Finite state machines are among the natural choices to model
cryptographic protocols. Hence, we choose to model the rules
using finite state machines. Formally, we can define taint analysis
as a deterministic finite automation (DFA) that can be represented
by the tuple: (Q,

∑
, δ, q0, F ). Where, Q = {q0, q1, q2, q3},∑

= {source(), propagator(), filter(), sink()}, δ is pre-
sented in Table 2, q0 = {q0} and F = {q3}. Figure 2 shows
the finite state machine (FSM) representation. In the next section,
we discuss how this DFA based language can be used to express
cryptographic properties at the meta-level so that taint analysis can
be used to detect their violations.

Next, we discuss the mapping of cryptographic properties
with taint analysis properties and show that taint analysis can be
used effectively to detect any violations of these cryptographic
properties.
Use of insecure primitives.

Generally, cryptographic libraries provide a high-level inter-
face to support a wide range of cryptographic functions (e.g.,
hashing, symmetric ciphers, asymmetric ciphers, signature, etc.),
so that the coding style remains consistent regardless of the under-
lying algorithm or mode. Most of them provide a set of convenient
functions to create the specification of a crypto primitive (e.g,
MD5) that can be used to initialize a certain type of cryptographic
operation (e.g., digest).

To identify, the use of insecure cryptographic primitives (Rules
1, 6, 10, 23 in Table 1), one needs to identify that an insecure

q0 q1

q3

source()

sink()

(a)

Inputs

source() sink()

St
at

es

q0 q1 –
q1 – q3
q3 – –

(b)

Fig. 3: (a) Finite state machine (FSM) and (b) transition function
table (δ) to detect insecure cryptographic primitives. For example,
to detect the usage of MD5, EVP_md5 function can be used as a
source and EVP_DigestInit_ex can be used as sink.

cryptographic primitive is used to initialize a cryptographic opera-
tion. If we define the creation of insecure cryptographic primitives
as source()’s and the initialization of cryptographic operations as
sink()’s, then the detection of such cases can be represented by
a DFA tuple: (Q,

∑
, δ, q0, F ). Where, Q = {q0, q1, q3},

∑
=

{source(), sink()}, δ is presented in Figure 3(b), q0 = {q0} and
F = {q3}. The finite state machine is presented in Figure 3(a).
Since, if we discard input symbol set {propagator(), filter()} from
FSA of Figure 2, the FSM in Figure 2 and Figure 3(a) becomes
equivalent. This means that taint analysis can detect all such uses
of insecure crypto primitives.

q0 q1

q3

q2
source()

sink()

filter()

Fig. 4: The finite state machine (FSM) to detect unsanitized inputs
from external sources. For an example, to defend against the
heartbleed attacks in OpenSSL, the length parameter of memcpy
should not be directly propagated (without filtering) from any
untrusted source e.g., n2s, which is a function used to read values
from the network.

q0 q1 q3q2
<entry>

<start-loop>

<end-loop>
<break/return>

(a)

q0 q1 q3q2
<entry> <error-msg1> <error-msg2>

(b)

Fig. 5: DFA to detect (a) early termination in a loop, (b)
non-generic error messages by traversing program dependence
graphs. Inputs of these DFA are the nodes of the graph. Here,
<entry> represents the generic triggering node. For example,
EVP_DecryptFinal_ex can serve as a trigger for rule 4. We
labeled the inputs for only the state changing transitions.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 7

Filtering data from external sources.
Data from external sources should be filtered before use (Rules

15, 16, 17, 18 and 22 of Table 1). If we define external sources
as source() and functions that are sensitive to any external data
as sink() and any sanitizing/filtering function as filters, then the
FSM in Figure 4 can be used to detect any flow from external
sources to the sensitive sink avoiding filters. Discarding input
symbol propagator() from FSM of Figure 2 will result the FSM
in Figure 4. Thus, taint analysis can detect all such violations.

Mappings for other rules can be deduced similarly.

4.1.2 Detection with other techniques.
In this section, we discuss some of the rules that can be can
be detected using other static analysis techniques and expressed
using deterministic finite automaton (DFA). The purpose of this is
to motivate future research to unify various detection techniques
within a single tool.

It is still unclear how the techniques proposed in [21], [22],
[23] can be mapped within our general framework to detect
timing-side channels. However, some of the straightforward cases
can be mapped to our general framework. For example, an early
termination using break/return or non-generic error message using
program dependence graph analysis (Rule 3, 4 & 7), can be
expressed in DFA based language as shown in Figure 5. It is
unclear how to model early termination due to the loop control
expressions (as shown below) using a DFA.

while(arr1[i] == arr2[i] && i < max_length){
i++;

}

Static analysis can also be used to detect cyclic function calls
on untrusted inputs (Rule 24). Type truncation (Rule 13), dangling
pointers (Rule 14), memory leaks (Rule 21) can be detected using
forward data flow analysis. The use of constant keys can be
detected using backward data flow analysis (Rule 20) [11]. Once,
the technique is fixed, then expressing these rules in DFA based
language is relatively straightforward.

4.2 System Overview
In Section 4.1, maximum rules (15 out of 23) can be enforced
using taint analysis. Hence, to demonstrate the effectiveness of
our methodology, we built a static taint analysis based system
(named, TAINTCRYPT) that can be used to automatically enforce
all these 15 rules. TAINTCRYPT is built as a checker on top of
the Clang static analyzer [57]. Clang static analyzer is a compile-
time static analysis platform, which runs a set of checkers to find
bugs during compilation of C/C++ programs [58]. TAINTCRYPT

takes the cryptographic program under checking as input and
outputs a security report that informs the detected cryptographic
vulnerabilities in the program.

Specifically, TAINTCRYPT analyzes the input program in three
key steps corresponding to the three technical components shown
in the figure:

• Clang preprocessing, which transforms the given program
written in C to its control flow graph (CFG).

• Symbolic execution, which explores the program symbol-
ically and produces symbolic values for program states on
the CFG. The execution is path-sensitive and every pos-
sible path through the program is explored. The explored
execution traces are represented with ExplodedGraph

object. Each node of the graph is ExplodedNode, which
consists of a ProgramPoint and a ProgramState.

• Taint checking, which performs the static information flow
analysis on ExplodedGraph of a given program to
identify cryptographic vulnerabilities.

Fig. 6: An example of TAINTCRYPT detecting the use of vul-
nerable functionality (MD5) in OpenSSL, which violates the
security rule against using broken hash functions (Row 23 of
Table 1). In this example, our analysis correctly identified the
violation by reporting the invocation of a vulnerable hash function
EVP_MD5().

To accommodate varied application scenarios, TAINTCRYPT

reads a configuration file where users can specify taint sources,
sinks, propagators and filters as functions used by the taint
checking module. Note that, TAINTCRYPT has some built-in
taint propagation rules. For example, (1) a variable will become
tainted if a tainted value is assigned to it, (2) if the input of a
built-in value transforming function (e.g., atoi, atol, gets,
toupper, tolower) is tainted, then its return value is also
marked as tainted, (3) if the input to a memory copying function
(e.g., memcpy, strcpy) is tainted then its return value is also
marked as tainted.

Note that, symbolic execution enables fine tracking of memory
regions within clang static analyzer. In TAINTCRYPT an entire
array is marked as tainted only if all the elements of the array
are tainted, otherwise it marks individual elements at particular
off-sets if the taint is propagated to the corresponding element.
TAINTCRYPT leverages the builtin alias analysis of the clang static
analyzer to compute aliases of a variable.

5 EVALUATION

We evaluate TAINTCRYPT by conducting a controlled experiment
on known cryptographic vulnerabilities. Specifically, our evalua-
tion answers the following questions.

• Can TAINTCRYPT detect known cryptographic vulnerabil-
ities in popular libraries and tools? (Section 5.1)

• Can TAINTCRYPT detect new vulnerabilities from Cryp-
tographic API misuses? (Section 5.2)

• In which scenarios can TAINTCRYPT produce false posi-
tives? (Section 5.3)

5.1 Controlled Experiments
The purpose of our evaluation is to demonstrate how TAINTCRYPT

can be used effectively to enforce the 15 security rules that are
enforceable through static taint analysis. In Table 3, we show the
overview of our controlled experimental evaluation.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 8

TABLE 3: Overview of TAINTCRYPT evaluation.

Property Rule Software Version # Violations Similar Rules

(1) ECB mode OpenSSL 1.0.1f 0 –
(6) Insecure block ciphers OpenSSL 1.0.1f 2 –

Deprecated function invocation (10) Insecure PRNG OpenSSL 1.0.1f 0 –
(23) Insecure Hash OpenSSL 1.0.1f 7 –

Mandatory function invocation (11) Random nonce OpenSSL 1.0.1f 1
(2) Random IV
(9) Non-predictable PRNG seed
(20) Non-predictable keys

Untrustworthy inputs (22) Memory disclosure OpenSSL 1.0.1f 7

(15) Integer overflow
(16) Buffer overflow
(17) checking return values
(18) Divide-by-zero

Unwanted call sequence (12) Double free() OpenSSL 1.1.0-stable 1 –

Sensitive data leak (19) Leak of PRNG seeds ScreenOS 6.2.0r1 1 –

Fig. 7: An example of TAINTCRYPT detecting the memory disclo-
sure vulnerability in OpenSSL-1.0.1f (Row 22 of Table 1) hence
the violation of the rule 22 against that vulnerability. Here the use
of external data in variable payload without proper sanitization
causes disclosure of memory of arbitrary size.

5.1.1 Use of Insecure Primitives

The enforcement of the security rules in Rows 1, 5, 6, 10
and 23 of Table 1 demands programmers to avoid/deprecate
insecure cryptographic functionalities. For these cases, the user
of TAINTCRYPT can specify the instantiation of insecure crypto
primitives (e.g., EVP_aes_128_ecb (Rule 1), EVP_rc4 (Rule
6), EVP_md5 (Rule 23)) as sources and the initialization of any
cryptographic operations (e.g., EVP_EncryptInit_ex (Rules

q0 q1

q3

EV P md5

EV P DigestInit ex

Fig. 8: Finite state machine (FSM) to detect the usage of
MD5, EVP_md5 function can be used as a source and
EVP_DigestInit_ex can be used as sink.

1, 6) EVP_DigestInit_ex, X509_digest (Rule 23)) as
sinks, and run the tool with this source/sink configuration. If
there exists any information flow path between one of these
listed sources and one of the specified sinks in the given code,
TAINTCRYPT identifies and reports it. As discussed in Sec-
tion 4.1.1, if TAINTCRYPT reports at least one such path, the
requirement of deprecating the specified vulnerable functions is
violated.

In Figure 8, we present the finite state machine (FSM) to detect
the insecure usage of MD5 using TAINTCRYPT. Figure 6 presents
an example of detected MD5 instance in OpenSSL2. For rule 10,
TAINTCRYPT reports a violation if an use of rand() is observed.

5.1.2 Filtering Data From External Sources

q0 q1

q3

q2
n2s

memcpy

< empty >

Fig. 9: The finite state machine (FSM) to detect heartbleed attack
in OpenSSL. Here, n2s is a function used to read values from
network.

Using data from external sources may be unavoidable, yet for
security, such data should be filtered/sanitized before used. To
enforce these types of security rules (in Rows 15, 16, 17, 18
and 22 of Table 1), the user of TAINTCRYPT would specify three

2. This vulnerability existed before commit f8547f62



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 9

types of functions in its configuration: (1) untrusted data sources
(source functions), (2) their relevant sinks (sink functions) and,
most importantly, (3) data filters/sanitizers (filter functions). If
there exists any path from any source to any sink that bypasses
all the filters, an instance of violation against the rules is reported
by TAINTCRYPT.

As an example, Figure 7 illustrates the violation of rule 22
due to a heartbleed memory disclosure vulnerability in OpenSSL-
1.0.1f. The source (function n2s) produces an untrusted input data
in variable payload at Line 1464, which potentially reaches the
invocation of the sink (function memcpy) at Line 1487 hence
leads to memory disclosure. In this case, no filter is found on any
potential flows from the source to the sink, thus TAINTCRYPT

reports the rule 22 being violated. The corresponding FSM is
shown in Figure 9.

(a) The source call_dummy_source_client_random pro-
duces untrusted input s->s3->client_random.

(b) WPACKET_memcpy is a potential sink and
ssl_fill_hello_random a potential filter.

Fig. 10: An example of TAINTCRYPT facilitating the enforce-
ment of security rule 11 which concerns secured random
number generation in OpenSSL. In this case, as there ex-
ists a path from the source to the sink that avoids the filter
ssl_fill_hello_random, TAINTCRYPT generates a warn-
ing reporting the rule being violated.

5.1.3 Ensuring Certain Function Invocations
To enforce the security rules 2, 9 and 11 (in corresponding rows
of Table 1), we need to ensure the invocation of certain functions.
To do that, the TAINTCRYPT user may specify these functions as
filters as part of the configuration and then run the tool. This way,
our analysis reports any dangerous path from a source to a sink
that avoids these filters. If at least one such path is reported, the
analysis indicates that the requirement of invoking the specified
functions is violated.

To illustrate the ability of our analysis in detecting
such violations, Figure 10 shows that the function

call_dummy_source_client_random as a source
produces an untrusted input held in the variable
s->s3->client_random3. This untrusted data
would flow to the sink WPACKET_memcpy if function
ssl_fill_hello_random as a potential filter is not invoked.
In this example, at least one path from the source to the sink
exists which bypasses the filter. Since the existence of such a
path is unexpected (with respect to the requirement that the filter
should be invoked), TAINTCRYPT produces a warning indicating
the security violation.

Closer inspection of this example reveals that the re-
ported path actually reuses previously generated values of
s->s3->client_random variable, thus cannot be considered
as a security violation. This indicates that TAINTCRYPT might
produce false positives when a violation of the defined crypto-
graphic property does not directly translate to a security violation.

To whitelist such special value propagations, one should mark
them as filter(s).

In our current prototype, only a sequence of 2 function calls
can be modeled. However, TAINTCRYPT can be modified to
record all the orthogonal call sequences on the way from source to
sink, which can be used to analyze an arbitrary sequence of calls.

5.1.4 Preventing Data Leaks
Our analysis can also be used to detect violation of security rules
(in particular, rule 19 in Table 1) against data leaks. To do so,
the user would indicate in the configuration of TAINTCRYPT the
sensitive data producers as sensitive sources and potential mole
functions (e.g., function writing data to the filesystem or network)
as untrusted sinks. The information flow analysis with respect
to this configuration detects and reports if there exists any path
from one of these sources to one of the sinks. In [6], the authors
showed that ScreenOS of Juniper network was leaking seeds due
to programming errors.

Figure 11 illustrates how our analysis with TAINTCRYPT can
be employed to detect violations of rule 19. In this example, the
data subject to potential leakage is a PRNG seed held in the
variable prng_seed. The data is first tainted at Line 67 and
later leaked at Line 98 via the sink print_number through five
major steps highlighted in light yellow.

5.1.5 Avoiding Double-Free Vulnerabilities
Our technique can also accommodate the need for enforcing the
security rule 12, which would prevent the vulnerabilities of double
free in the given program. Specifically, the user of TAINTCRYPT

may specify deallocation functions (e.g., the free function in C
programs) as both sources and sinks, and then track the taint flow
from the sources to the sinks. If a variable is passed as an argument
to a deallocation function as a source, it gets tainted. Then if
the taint propagates to a subsequent invocation of a deallocation
function as a sink (i.e., the variable is freed the second time), an
instance of violation of rule 12 is reported.

In Figure 12, the example illustrates the use scenario of
TAINTCRYPT in which our analysis is applied to detect double-
free vulnerabilities in OpenSSL4. In this example, the violation of
rule 12 due to the variable parms being double-freed is detected

3. The present TAINTCRYPT prototype only accepts functions as sources.
To accommodate the cases in which variables act immediately as taint sources,
we use a dummy call that takes the variable as an argument to adapt to the
current capabilities of TAINTCRYPT.

4. This vulnerability existed till commit a34ac5b8



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 10

(a) Sensitive source.

(b) Untrusted sink.

Fig. 11: An example illustrating the ability of our analysis in de-
tecting and reporting an instance of data leak in Juniper Network.
In this case, the sensitive data source in variable prng_seed as
the first 8 bytes of variable prng_temporary reaches the sink
print_number, which violates our security rule 19.

Rule Violations Software

(1) ECB mode 3 tor
(6) Insecure block ciphers 0 –
(10) Insecure PRNG 5 lib-apr
(23) Insecure Hash 2 httpd
(12) Double free() 0 –

TABLE 4: Vulnerabilities detected by TAINTCRYPT in 5 popular
C/C++ projects (httpd, curl, lib-apr, openssh, tor).

through tracking information flow via this variable from the first
deallocation site at Line 74 to the second at Line 96.

5.2 TAINTCRYPT in the wild

We ran TAINTCRYPT on 5 popular applications and libraries that
are written in C/C++. These tools and libraries are httpd (version:
2.4.39), curl (version: 7.64.1), lib-apr (version: 1.7.0), openssh
(version: 7.7p1), tor (version: 0.3.4.10). All these libraries and
tools uses OpenSSL APIs for cryptographic functionalities. In this

Fig. 12: An example case of our technique is used to detect
a double-free vulnerability in OpenSSL, which constitutes an
instance of violation of our security rule 12. Here TAINTCRYPT

reports the double-free incident with variable parms.

Fig. 13: An example of TAINTCRYPT detecting the use of SHA1
in httpd, which violates the security rule against using broken hash
functions (Row 23 of Table 1).

experiment we restrict TAINTCRYPT to find vulnerabilities under
5 rules (Rules 1, 6, 10, 12 and 23) presented in Table 4, since,
only these 5 rules are based on APIs that are uniform across all
the applications. The APIs are presented in Table 5.

TAINTCRYPT detected 2 usage of SHA1 (EVP_sha1) hash
function under Rule 23 (Shown in Figure 13), 3 usage of AES
in ECB mode (EVP_aes_128_ecb, EVP_aes_192_ecb,
EVP_aes_256_ecb) under Rule 1. TAINTCRYPT also reported
5 usage of rand() under Rule 10. The summary of the analysis
is presented in Table 4. Note that, we also manually analyzed
the source code to determine false negatives (i.e., how many
vulnerabilities did TAINTCRYPT miss). However, our manual
analysis did not uncover any additional vulnerabilities.

Clang static analyzer is path-sensitive, it slows down the
compilation process [57]. TAINTCRYPT inherits this impact on
runtime overhead. However, our experimental evaluation on large
scale projects indicates the scalability of this design choice.

5.3 Limitations

Because our analysis aims to capture sufficient conditions on
meta-level properties, it has the potential to generate false posi-
tives. However, capturing necessary condition statically to prove
cryptographic vulnerabilities is still open.

Also, static code analysis trades precision for soundness
and scalability, in general. The symbolic execution based path-
sensitive analysis takes computationally exponential time [59].
Therefore, considering the scalability, the loop unrolling mech-
anism of the SMT solver used to model symbolic execution in
clang static analyzer is made constant bounded. Thus, similar to



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 11

any other static analysis-based approaches, our technique suffers
from imprecision as well.

Currently, our analysis only accepts functions as sources,
sinks, filters, and propagators. As a result, in many real-world
cryptographic software, the use of constraints as filters may be
prevalent (e.g., using predicates to screen untrustworthy inputs)
can lead to additional false positives. On the other hand, the com-
prehensiveness of these four lists of functions in the configuration
for our technique immediately affect its soundness: missing some
of these functions would lead to false negatives. For some of the
rules, these configurations are standard across different code bases
(e.g., Rules 1, 5, 6, 10, 12, 23), while for other rules developers
need to specify these configurations.

Another limitation of TAINTCRYPT lies in its current im-
plementation. TAINTCRYPT is built on the static taint checker
in Clang, which by default does not support analysis across
translational units. Thus, currently, our tool does not track taint
propagation out of a translational unit. If a taint source and a
taint sink are located in different translational units, TAINTCRYPT

would not be able to detect the security violation when there is
actually an information flow path from the source to the sink.
However, this is an implementation flaw rather than a limitation
of our technique itself.

6 RELATED WORK

Most existing approaches to defending against cryptographic vul-
nerabilities are based on dynamic analysis. A well-known ap-
proach is fuzzing (e.g., [14], [60]), a blackbox strategy which has
been used for verifying hostname verification [14] and certificate
validation in SSL/TLS [60]. Another notable example of dynamic
approaches is to validate runtime protocol behaviors with a veri-
fier, which is capable of detecting invalid or inconsistent network
messages [15]. Although the work in [15] uses symbolic execution
to infer client behaviors, it requires the concrete execution of
programs for detecting anomalies.

Dynamic approaches rely on concrete executions of the pro-
gram. Accordingly, their results are subject to the availability
and quality of the run-time inputs that drive the executions,
which may not be always available in practical use scenarios. In
addition, when vulnerabilities are subtle and not externally visible,
(i.e., do not manifest themselves in simple observable behaviors),
dynamic solutions are ineffective. Examples of such cryptographic
violations include the use of improper IVs in ciphers, poor random
number generation, the leak of secrets, or the use of legacy
cryptographic primitives in our threat model. Dynamic approaches
are limited to finding only the input guided vulnerabilities with
externally visible behaviors (e.g., triggering program crashes [16]
or anomalous protocol states [15], [17]). In addition, as pointed out
by [13], fuzzing and other dynamic analysis techniques typically
cannot guarantee coverage, which may result in missed detection.

In [61], the authors explored the capability of symbolic execu-
tion to detect data authentication vulnerabilities in WPA2 imple-
mentations. Authors showed that mishandling data authentication
may result in timing side channels (Rule 7) or decryption oracles
(Rules 3, 4). Since our approach does not cover vulnerabilities
related to decryption oracle or side channels, the work presented
in [61] nicely compliments our tool, TAINTCRYPT.

In contrast, our approach to detect cryptographic security rule
violations is purely static thus bypasses the above limitations of
dynamic approaches. Moreover, static analysis has more potential

to be scalable than dynamic analysis, as it does not require
program execution (which always comes with extra overheads).
Further, with extensive illustrations, we also have demonstrated
the potential of static analysis to be capable of assisting developers
with facilitating the enforcement of various security rules against
corresponding cryptographic security vulnerabilities.

Prior works aiming to close the gap between the theory and
practice of cryptography mostly target provable cryptographic
solutions [7], mainly focuses on cryptographic API misuses [8],
[62]. Egele et al. presented CryptoLint to detect cryptographic API
misuses in Android applications [8] through lightweight control-
flow analysis driven program slicing which has the potential to
produce many false positives. Rahaman et al. proposed Crypto-
Guard [11] with an extended set of cryptographic misuse detection
rules. CryptoGuard also proposes a set of refinement insights that
leverages language restrictions and programming idioms to reduce
false alarms. In [63], authors proposed a set of benchmarks to
evaluate the performance of cryptographic misuse detection tools
for Java/Android. FixDroid [9] and CogniCrypt [10] emphasize
on the usability aspects of cryptographic misuse problems. While
FixDroid focuses on improving the usability by facilitating real-
time feedback and suggestion and CogniCrypt focuses on generat-
ing secure code. All these works focus on the misuse detection of
cryptographic APIs in Java and Android by using program slicing.
In contrast, TAINTCRYPT leverages taint-based information flow
analysis to detect library-level and application-level vulnerabilities
in C/C++ programs. The recent work SymCerts used a combina-
tion of concrete values and symbolic execution to detect missing
checks in X.509 certificate verification code [13]. Concrete values
are used to reduce the path exploration space.

Designing secure API wrappers has been shown to effec-
tively eliminate the invocation of potentially vulnerable functions
(e.g., unsafe memory copy) or operations (e.g., unsanitized SQL
queries) at Google [64]. For Python, cryptography.io is a crypto
library with simpler APIs, some of which require little to no con-
figuration choices. These code refactoring approaches are useful
for reducing misuses, however, they cannot address all the issues
in our threat model, e.g., vulnerabilities in the library code or
design flaws. In addition, user studies showed that simpler crypto
APIs do not completely solve developers’ problems [65].

Information flow analysis has been extensively used for de-
tecting security vulnerabilities and threats, including both static
(e.g., [66], [67]) and dynamic (e.g., [68], [69]) approaches. How-
ever, most of these existing techniques are developed for non-
crypto related software problems, such as malware analysis [70],
[71], [72] and vulnerability discoveries [73]. In addition, prior
works applying information flow analysis are mostly limited to
detecting sensitive and/or private data leaks. In comparison, we
analyze a wide range of security vulnerabilities in cryptographic
implementations and derive a number of enforceable security rules
that immediately help developers prevent those vulnerabilities in
their code. Additionally, our technical approach TAINTCRYPT can
be utilized to detect violations against a variety of security rules
including but not limited to those on data leaks.

7 CONCLUSION AND FUTURE WORK

A small programming error in the implementations can lead to
dangerous security vulnerabilities that have a severe and broad
impact on end-user devices and services. In this paper, we aimed
to fill this gap by investigating real-world security threats in



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 12

cryptographic code. Our result of this study was a categorization of
25 different types of cryptographic security vulnerabilities, along
with associated defending rules that are practically enforceable.
We showed that 23 out of 25 rules are enforceable using static
analysis techniques. To facilitate developers in enforcing these
rules in their cryptographic coding practice, we have further de-
veloped an information flow analysis technique TAINTCRYPT and
implemented a prototype for C programs. We have demonstrated
with a controlled evaluation of how our technique can be applied
to varied use scenarios for identifying violations of 15 of our
security rules and thus helping developers avoid corresponding
vulnerabilities. Our experiment on 5 new tools and libraries using
cryptographic APIs generated new security insights.

As future work, we plan to make TAINTCRYPT capable
of detecting vulnerable cryptographic information flows across
multiple translational units, with respect to the LLVM framework
and Clang frontend on which our tool is built. In the longer
term, we also plan to expand our technique to cover a larger
and more diverse set of cryptographic vulnerabilities targeted by
the remaining security rules that our current technique is not
able to check. A promising approach toward that goal would be
to leverage control and data flow analysis in cooperation with
static tainting. Yet another part of future work is to improve
the efficiency of TAINTCRYPT configuration by automatically
discovering comprehensive lists of sources and sinks. Finally, sup-
porting non-function sources and sinks would make our technique
applicable in broader application scope.

8 ACKNOWLEDGMENT

This work was supported by the Office of Naval Research under
Grant ONR-N00014-17-1-2498, NSF CNS 1657124.

REFERENCES

[1] S. Rahaman and D. Yao, “Program analysis of Cryptographic implemen-
tations for security,” in IEEE Cybersecurity Development, SecDev 2017,
Cambridge, MA, USA, September 24-26, 2017, 2017, pp. 61–68.

[2] “RFC 2818 - HTTP over TLS,” https://tools.ietf.org/html/rfc2818, 2000,
[Online; accessed 15-Oct-2018].

[3] “RFC 6944 - applicability statement: DNS security (DNSSEC)
DNSKEY algorithm implementation status,” https://tools.ietf.org/html/
rfc6944, 2013, [Online; accessed 15-Oct-2018].

[4] “RFC 3207 - SMTP service extension for secure SMTP over trans-
port layer security,” https://www.ietf.org/rfc/rfc3207.txt, 2002, [Online;
accessed 15-Oct-2018].

[5] “The Heartbleed Bug,” http://heartbleed.com/, 2014, [Online; accessed
3-May-2017].

[6] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R. Weinmann, E. Rescorla, and H. Shacham,
“A systematic analysis of the Juniper Dual EC incident,” in
ACM CCS 2016, 2016, pp. 468–479. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978395

[7] N. Ferguson, B. Schneier, and T. Kohno, Cryptography
Engineering - Design Principles and Practical Applications. Wiley,
2010. [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0470474246.html

[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in Android applications,”
in ACM CCS 2013, 2013, pp. 73–84. [Online]. Available: http:
//doi.acm.org/10.1145/2508859.2516693

[9] D. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
Stitch in Time: Supporting Android Developers in Writing Secure Code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, 2017, pp. 1065–1077.

[10] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt:
supporting developers in using cryptography,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, 2017,
pp. 931–936.

[11] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz, D. Yao,
and M. Kantarcioglu, “CryptoGuard: High Precision Detection of Cryp-
tographic Vulnerabilities in Massive-sized Java Projects,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019 (to appear), 2019.

[12] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and
Z. Zhang, “Vetting SSL usage in applications with SSLINT,” in 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, 2015, pp. 519–534.

[13] S. Y. Chau, O. Chowdhury, M. E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru,
and N. Li, “SymCerts: Practical Symbolic Execution for Exposing
Noncompliance in X.509 Certificate Validation Implementations,”
in IEEE S&P 2017, 2017, pp. 503–520. [Online]. Available:
https://doi.org/10.1109/SP.2017.40

[14] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana,
“HVLearn: Automated Black-Box Analysis of Hostname Verification
in SSL/TLS Implementations,” in IEEE S&P 2017, 2017, pp. 521–538.
[Online]. Available: https://doi.org/10.1109/SP.2017.46

[15] A. Chi, R. A. Cochran, M. Nesfield, M. K. Reiter, and
C. Sturton, “A system to verify network behavior of known
cryptographic clients,” in 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017, 2017, pp. 177–195. [Online]. Available: https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/chi

[16] J. Somorovsky, “Systematic Fuzzing and Testing of TLS Libraries,”
in ACM CCS 2016, 2016, pp. 1492–1504. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978411

[17] J. de Ruiter and E. Poll, “Protocol State Fuzzing of
TLS Implementations,” in USENIX Security 2015, 2015, pp.
193–206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter

[18] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, 2015, pp. 535–552.

[19] “Bleichenbacher’s RSA signature forgery based on implementation er-
ror,” https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.
html, 2006, [Online; accessed 15-Oct-2018].

[20] Y. Lindell and J. Katz, Introduction to modern cryptography. Chapman
and Hall/CRC, 2014.

[21] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,
2014, pp. 1267–1279.

[22] B. Rodrigues, F. M. Q. Pereira, and D. F. Aranha, “Sparse representation
of implicit flows with applications to side-channel detection,” in Proceed-
ings of the 25th International Conference on Compiler Construction, CC
2016, Barcelona, Spain, March 12-18, 2016, 2016, pp. 110–120.

[23] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in USENIX Security
2016, 2016, pp. 53–70. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/almeida

[24] C. P. Garcı́a, B. B. Brumley, and Y. Yarom, “Make Sure DSA
Signing Exponentiations Really are Constant-Time,” in ACM CCS 2016,
2016, pp. 1639–1650. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978420

[25] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012, pp.
38–49.

[26] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1,” in CRYPTO ’98, 1998, pp.
1–12. [Online]. Available: http://dx.doi.org/10.1007/BFb0055716

[27] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does
cryptographic software fail?: a case study and open problems,”
in APSys 2014, 2014, pp. 7:1–7:7. [Online]. Available: http:
//doi.acm.org/10.1145/2637166.2637237



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 13

[28] G. V. Bard, “The Vulnerability of SSL to Chosen Plaintext Attack,”
IACR Cryptology ePrint Archive, vol. 2004, p. 111, 2004. [Online].
Available: http://eprint.iacr.org/2004/111

[29] “BEAST,” https://vnhacker.blogspot.co.uk/2011/09/beast.html, 2011,
[Online; accessed 3-May-2017].

[30] I. Goldberg and D. Wagner, “Randomness and the Netscape browser,” Dr
Dobb’s Journal-Software Tools for the Professional Programmer, vol. 21,
no. 1, pp. 66–71, 1996.

[31] D. J. Bernstein, Y. Chang, C. Cheng, L. Chou, N. Heninger, T. Lange,
and N. van Someren, “Factoring RSA Keys from Certified Smart Cards:
Coppersmith in the wild,” in ASIACRYPT 2013, 2013, pp. 341–360.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-42045-0 18

[32] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining your Ps and Qs: Detection of Widespread Weak
Keys in Network Devices,” in USENIX Security 2012, 2012,
pp. 205–220. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/heninger

[33] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange,
T. Ristenpart, D. J. Bernstein, J. Maskiewicz, H. Shacham,
and M. Fredrikson, “On the practical exploitability of dual
EC in TLS implementations,” in USENIX Security 2014, 2014,
pp. 319–335. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/checkoway

[34] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,
B. VanderSloot, E. Wustrow, S. Z. Béguelin, and P. Zimmermann,
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice,”
in ACM CCS 2015, 2015, pp. 5–17. [Online]. Available: http:
//doi.acm.org/10.1145/2810103.2813707

[35] K. Bhargavan and G. Leurent, “On the Practical (In-)Security of
64-bit Block Ciphers: Collision Attacks on HTTP over TLS and
OpenVPN,” in ACM CCS 2016, 2016, pp. 456–467. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978423

[36] ——, “Transcript Collision Attacks: Breaking Authentication in
TLS, IKE and SSH,” in NDSS 2016, 2016. [Online]. Avail-
able: https://www.internetsociety.org/sites/default/files/blogs-media/
transcript-collision-attacks-breaking-authentication-tls-ike-ssh.pdf

[37] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ...” in EUROCRYPT 2002, 2002, pp. 534–546.
[Online]. Available: http://dx.doi.org/10.1007/3-540-46035-7 35

[38] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites: exploiting
the SSL 3.0 fallback,” 2014.

[39] N. J. AlFardan and K. G. Paterson, “Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols,” in IEEE S&P 2013, 2013, pp. 526–540.
[Online]. Available: http://dx.doi.org/10.1109/SP.2013.42

[40] V. Klı́ma, O. Pokorný, and T. Rosa, “Attacking RSA-based Sessions
in SSL/TLS,” in Cryptographic Hardware and Embedded Systems -
CHES 2003, 5th International Workshop, Cologne, Germany, September
8-10, 2003, Proceedings, 2003, pp. 426–440. [Online]. Available:
https://doi.org/10.1007/978-3-540-45238-6 33

[41] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel,
and J. Tsay, “Efficient Padding Oracle Attacks on Cryptographic
Hardware,” in CRYPTO 2012, 2012, pp. 608–625. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5 36

[42] T. Jager, S. Schinzel, and J. Somorovsky, “Bleichenbacher’s Attack
Strikes again: Breaking PKCS#1 v1.5 in XML Encryption,” in
ESORICS 2012, 2012, pp. 752–769. [Online]. Available: https:
//doi.org/10.1007/978-3-642-33167-1 43

[43] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “DROWN:
breaking TLS Using SSLv2,” in USENIX Security 2016, 2016,
pp. 689–706. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/aviram

[44] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and
E. Tews, “Revisiting SSL/TLS Implementations: New Bleichenbacher
Side Channels and Attacks,” in USENIX Security 2014, 2014,
pp. 733–748. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/meyer

[45] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant Side-
Channel Attacks in PaaS Clouds,” in ACM CCS 2014, 2014, pp. 990–
1003. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660356

[46] D. Brumley and D. Boneh, “Remote Timing At-
tacks Are Practical,” in USENIX Security 2003,
2003. [Online]. Available: https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical

[47] B. B. Brumley and N. Tuveri, “Remote Timing Attacks Are Still
Practical,” in ESORICS 2011, 2011, pp. 355–371. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23822-2 20

[48] D. Page, “Theoretical use of cache memory as a cryptanalytic
side-channel,” IACR Cryptology ePrint Archive, vol. 2002, p. 169, 2002.
[Online]. Available: http://eprint.iacr.org/2002/169

[49] D. J. Bernstein, “Cache-timing attacks on AES,” http://cr.yp.to/papers.
html#cachetiming, 2005, [Online; accessed 4-May-2017].

[50] “CCS injection vulnerability,” http://ccsinjection.lepidum.co.jp/, 2015,
[Online; accessed 4-May-2017].

[51] “The FREAK attack,” https://censys.io/blog/freak, 2015, [Online; ac-
cessed 4-May-2017].

[52] S. Chen, J. Xu, and E. C. Sezer, “Non-Control-Data Attacks Are Realistic
Threats,” in USENIX Security 2005, 2005.

[53] “libevent (stack) buffer overflow in evutil parse sockaddr port(),” https:
//github.com/libevent/libevent/issues/318, 2016, [Online; accessed 4-
May-2017].

[54] “Fixed potential stack corruption in
mbedtls_x509write_crt_der(),” https://github.com/
ARMmbed/mbedtls/blob/development/ChangeLog#L118, 2016, [Online;
accessed 4-May-2017].

[55] “Fixed pthread implementation to avoid unintended double initiali-
sations and double frees.” https://github.com/ARMmbed/mbedtls/blob/
development/ChangeLog#L154, 2016, [Online; accessed 4-May-2017].

[56] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna,
“Cross Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis,” in NDSS 2007, 2007. [Online]. Available: http://www.isoc.
org/isoc/conferences/ndss/07/papers/cross-site-scripting prevention.pdf

[57] “Clang static analyzer,” https://clang-analyzer.llvm.org/, [Online; ac-
cessed 5-July-2019].

[58] M. Arroyo, F. Chiotta, and F. Bavera, “An user configurable clang
static analyzer taint checker,” in 35th International Conference of
the Chilean Computer Science Society, SCCC 2016, Valparaı́so,
Chile, October 10-14, 2016, 2016, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/SCCC.2016.7835996

[59] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” in USENIX OSDI 2008, 2008, pp. 209–
224. [Online]. Available: http://www.usenix.org/events/osdi08/tech/full
papers/cadar/cadar.pdf

[60] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 38–49.

[61] M. Vanhoef and F. Piessens, “Symbolic Execution of Security Protocol
Implementations: Handling Cryptographic Primitives,” in 12th USENIX
Workshop on Offensive Technologies, WOOT 2018, Baltimore, MD, USA,
August 13-14, 2018., 2018.

[62] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, ““Jumping Through
Hoops”: Why do Java Developers Struggle with Cryptography APIs?”
in Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on. IEEE, 2016, pp. 935–946.

[63] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A comprehen-
sive benchmark on Java Cryptographic API misuses,” in IEEE Cyberse-
curity Development, SecDev 2019 (to appear), 2019.

[64] C. Kern, “Secure design: A better bug repellent,” in Proceedings of the
IEEE Secure Development Conference (SecDev), 2017, keynote.

[65] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic apis,” in
Proceedings of the 38th IEEE Symposium on Security and Privacy, 2017.

[66] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” in ACM Sigplan Notices,
vol. 44, no. 6. ACM, 2009, pp. 87–97.

[67] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information Flow Analysis of Android applications in
DroidSafe.” in NDSS, 2015.

[68] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the 2007 international symposium on
Software testing and analysis. ACM, 2007, pp. 196–206.

[69] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[70] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang,
“Profiling user-trigger dependence for Android malware detection,”
Computers & Security, vol. 49, pp. 255–273, 2015. [Online]. Available:
https://doi.org/10.1016/j.cose.2014.11.001



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, OCTOBER 2019 14

[71] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic
Program Modeling for High-Precision Anomaly Classification,”
in IEEE CSF 2015, 2015, pp. 497–511. [Online]. Available:
https://doi.org/10.1109/CSF.2015.37

[72] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard: Learning-
based, large-scale discovery of hidden sensitive operations in android
apps,” in Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS), 2017.

[73] Y. Kwon, B. Saltaformaggio, I. L. Kim, K. H. Lee, X. Zhang, and D. Xu,
“A2c: Self destructing exploit executions via input perturbation,” in NDSS
2017, 2017.

APPENDIX

Rule Source(s) Sink(s)

(1) ECB mode
EVP aes 128 ecb,
EVP aes 256 ecb,
EVP aes 192 ecb

EVP EncryptInit ex

(6) Insecure block ciphers

EVP des cbc,
EVP des ede cbc,
EVP des ede3 cbc,
EVP des ecb,
EVP des ede,
EVP des ede3,
EVP rc2 cbc,
EVP rc2 ecb,
EVP rc2 64 cbc,
EVP rc2 40 cbc,
EVP rc4,
EVP rc4 40

EVP EncryptInit ex

(10) Insecure PRNG rand *

(23) Insecure Hash EVP md5,
EVP sha1

EVP DigestInit ex,
EVP DigestInit ex

(12) Double free() free,
CONF free

free,
CONF free

TABLE 5: APIs used as sources and sinks and their corresponding
rules. (*) indicates any.


