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Abstract—The antibandwidth problem is to label the vertices
of a graph of n vertices by 1, 2, 3, · · · , n bijectively, such that the
minimum difference of labels of adjacent vertices is maximized.
The antibandwidth problem is known as NP-hard for general
graphs. In this paper, we give an antibandwidth labeling scheme
for a special class of trees called itchy caterpillar and study the
lower bound of antibandwidth problem for the same class of
graphs. We also give exact results for some of its subclasses. The
result for itchy caterpillars with hair length 1, is the first non-
trivial exact result of antibandwidth problem for any class of
graphs.

I. INTRODUCTION

The antibandwidth problem [1] is a popular vertex label-

ing problem, where we have to label the vertices in such

way that the minimum diffrence between two vertices is

maximized. More formally, let G be a graph on n vertices.

Given a bijection f : V (G) → {1, 2, 3, . . . , n}, if |f | =
min{|f(u) − f(v)| : uv ǫ E(G)} then the antibandwidth of

G is the maximum {|f |} over all such bijections f of G.

In the literature, the antibandwidth problem is also known as

dual bandwidth problem [2], separation number of graphs [3],

maximum differential graph coloring problem [4].

The antibandwidth problem is NP-hard [3] for general

graphs. It is known to be polynomially solvable for the com-

plements of interval, arborescent comparability and threshold

graphs [5], [6]. Exact results and tight bounds are known for

paths, cycles, grid, meshes, hypercubes [1], [2], [4], [7]. For

a complete binary tree with h height the antibandwidth is

2h − 1 [8] and for complete k-ary tree [9], the antibandwidth

is n+1−k
2 , when k is even. If Pm,n is a tree, obtained from a

path Pm and m copies of path Pn such that the ith vertex of

Pm is adjacent to an end vertex of the ith copy of Pn. Then the

antibandwidth of Pm,n is ⌊mn
2 ⌋ [8]. But above claim cannot

be extended for graphs, when every vertex of Pm has more

than one copies of Pn.

Millar et al. [10] introduced an antibandwidth labeling

scheme for forests, which is known as Millar-Pritikin labeling

scheme. According to Millar-Pritikin labeling scheme, for a

forest G, if the bipartition sets are X and Y , where |X| ≤ |Y |.
Then the antibandwidth of G is at least |X|. They also showed

that for a balanced bipartite graph (|X| = |Y |) Millar-Pritikin

labeling scheme produces optimal antibandwidth value. Inter-

estingly, still there is no results for any class of graphs, for

which the optimal value of antibandwidth is non-trivial (i.e.,

not
⌊

n
2

⌋

).

Finding the antibandwidth of a graph has several practical

applications. For example, if the vertices of the graph G

represent sensitive facilities or chemicals, then placing them

too close together can be risky. Formally the problem is known

as enemy facility location problem [9]. Given a map, we define

the country graph G = (V,E) to be the undirected graph

where countries are nodes and two countries are connected by

an edge if they share a nontrivial boundary. We then consider

the problem of assigning colors to nodes of G so that the

color distance between nodes that share an edge is maximized

[4]. Given n transmitters and n frequencies, the frequency

assignment problem is to find a bijective frequency assignment

where the interferring trasnmitters have as different frequency

as possible, where transmitters are the vertices of graph G and

there is an edge between two interfering transmitters [9].

A tree T is an itchy caterpillar if T can be decomposed into

vertex disjoint paths P0, P1, P2, · · · , Pk such that (a) exactly

one end of a path Pi, 1 ≤ i ≤ k, is adjacent to a vertex on

P0, (b) each Pi, 1 ≤ i ≤ k, has equal number of vertices

and (c) the number of paths among Pi, 1 ≤ i ≤ k, adjacent

to each vertex on P0 is equal. P0 is called spine and Pi is

called hair. The tree shown in Figure 1 is an itchy caterpillar.

Note that an itchy caterpillar is catterpilar if each Pi, 1 ≤
i ≤ k, contains exactly one vertex. Itchy caterpillar is also a

subclass of caterpilars with hair length at most r [11], where

r is number of vertices in Pi, 1 ≤ i ≤ k. In this paper, we

provide the exact result of itchy caterpillars with hair length

1 which is the first non-trivial optimal result for any class of

graph. Then we provide an antibandwidth labeling for itchy

caterpillars with hair length 2. Based on that we generalize

the labeling scheme for the entire class.

The rest of the paper is organized as follows. In Section

2, we describe some definations and preliminaries related to
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Fig. 1. An itchy caterpillar with antibandwidth labeling



the main result. In Section 3, we study the antibandwidth

problem for itchy capterpillars with hair length 2 or more.

In Section 4, we present the upper bound and exact result

for itchy caterpillars with hair length 1. Finally Section 5
concludes the paper and discusses some open problems for

future works.

II. PRELIMINARIES

A graph G is a tuple (V,E) which consists of a finite set

V of vertices and a finite set E of edges, each edge being an

unordered pair of vertices.

A tree T is a connected graph which contains no cycle. A

vertex u of T having degree one in T is called a leaf of T .

A vertex u of T having degree greater than one in T is called

an internal vertex of T . A forest is an acyclic graph. A tree is

a connected forest, and every component of a forest is a tree.

A caterpillar is a tree for which deletion of leaves together

with their incident edges produces a path. The spine of the

caterpillar is the longest path to which all other vertices of the

caterpillar are adjacent. The vertices which are on spine are

called spine vertices. The vertices which are not on the spine

are called non-spine vertices or foot. Every non-spine vertex

is adjacent to exactly one spine vertex.

A tree T is an itchy caterpillar if T can be decomposed into

vertex disjoint paths P0, P1, P2, · · · , Pk such that (a) exactly

one end of a path Pi, 1 ≤ i ≤ k, is adjacent to a vertex on P0,

(b) each Pi, 1 ≤ i ≤ k, has equal number of vertices and (c)

the number of paths among Pi, 1 ≤ i ≤ k, adjacent to each

vertex on P0 is equal. The tree shown in Figure 2 is an itchy

caterpillar. P0 is called the spine and Pi is called a hair of the

itchy caterpillar. Let n be the total number of vertices, p be the

number of spine vertices, q be the number of hairs attached

to each spine vertex and r be the length of each hair of T .

Then n = pqr + p holds. A vertex v of an itchy caterpillar

T resides in level L0, when v is a spine vertex of T and v

resides in level Li, when v is in ith position of a hair in the

direction of spine to leaf, where 1 ≤ i ≤ r.

Lemma 2.1. Let G be an itchy caterpillar, p be the number

of spine vertices, q be the number of hairs per spine vertices,

r be the length of each hair and A, B be the two bipartion

sets of G. For G, if A contains the vertices of Level Lr−1 of

hairs attached to odd spine vertices, then |A| ≤ |B|.

Proof: Based on the values of p and r, we have the

following three cases to consider:

Case I: p is even.
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Fig. 2. An itchy caterpillar, composed with paths P0, P1, · · · , Pk .

For p is even, we see that |A| = |B|, hence the claim is

true.

Case II: p is odd and r is even.

When r is even, if A contains the vertices of Level Lr−1 of

hairs attached to odd spine vertices, then B contains the odd

spine vertices. So the cardinality of A and B are
(

r
2

)

pq+
⌊

p

2

⌋

and
(

r
2

)

pq+
⌈

p

2

⌉

respectively. Clearly we see that, |A| < |B|.
Case III: p is odd and r is odd.

When r is odd, if A contains the vertices of Level Lr−1, of

hairs attached to odd spine vertices, then A contains the odd

spine vertices also. So the cardinality of A is
⌊

r
2

⌋

∗
⌈

p

2

⌉

∗ q+
⌈

r
2

⌉

∗
⌊

p

2

⌋

∗ q +
⌈

p

2

⌉

and cardinality of B is
⌈

r
2

⌉

∗
⌈

p

2

⌉

∗ q +
⌊

r
2

⌋

∗
⌊

p

2

⌋

∗ q +
⌊

p

2

⌋

. Again we see that, |A| < |B|. Thus our

proof is done.

III. ANTIBANDWIDTH LABELING OF ITCHY

CATERPILLARS

In this section, we provide an antibandwidth labeling

scheme for general itchy caterpillars and study the lower

bound of antibandwidth problem for the same class of graphs.

First we define an antibandwidth labeling scheme for itchy

caterpillars with hair length 2. Based on this scheme, we

construct another labeling scheme for itchy caterpillars with

hair length 2 or more. Finally We also show that for some

cases, this labeling scheme produces optimal antibandwidth

value.

Lemma 3.1. Let G be an itchy caterpillar, p be the number

of spine vertices, q be the number of hairs per spine vertices,

r be the length of each hair, n be the total number of vertices

of G. A and B be the two bipartition vertex set of G, such

that |A| ≤ |B|. Then G admits a vertex labeling Γ with the

following properties, when r = 2:

(1) labels of the vertices of same set at Level Li are consec-

utive from left to right.

(2) labels of vertices of set A are from 1 to |A| and labels

for set B starts from |A|+ 1 to n consecutively.

(3) the lowest value of labels of vertices of A and the highest

value of labels of vertices of B lie in Level Lr−1.

(4) |A| ≤ δi ≤ |A|+
⌈

p

2

⌉

q, where δi is the labeling difference

between two neighbours of G in Γ.

Proof: First we decompose the vertices of G into two

bipartition vertex set A and B, such that the vertices of level

L1, of hairs attached to odd spine vertices, goes to A. Then

according to Lemma 2.1, we see that |A| ≤ |B|.
Now we produce a vertex labeling Γ of the itchy caterpillar

G, as shown in Figure 3, with the following labeling scheme.

Lebeling the vertices of set A:
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Fig. 3. Antibandwidth labeling of itchy caterpillar with hair length 2



• labels from 1 to
⌈

p

2

⌉

∗ q are assigned to the vertices

of Level L1, of hairs attached to the odd spine vertices

sequentially from left to right.

• labels from
⌈

p

2

⌉

∗ q+ 1 are assigned to
⌈

p

2

⌉

∗ q+
⌊

p

2

⌋

to

the even spine vertices sequentially from left to right.

• labels from
⌈

p

2

⌉

∗ q +
⌊

p

2

⌋

+ 1 to pq +
⌊

p

2

⌋

are assigned

to the vertices of Level L2, of hairs attached to the even

spine vertices sequentially from left to right.

Lebeling the vertices of set B:

• labels from pq+
⌊

p

2

⌋

+1 to pq+
⌈

p

2

⌉

∗q+
⌊

p

2

⌋

are assigned

to the vertices of Level L2, of hairs attached to odd spine

vertices sequentially from left to right.

• labels from pq +
⌈

p

2

⌉

∗ q +
⌊

p

2

⌋

+ 1 to pq +
⌈

p

2

⌉

∗ q + p

are assigned to the odd spine vertices sequentially from

left to right.

• labels from pq+
⌈

p

2

⌉

∗q+p+1 to 2pq+p are assigned to

the vertices of Level L2, of hairs attached to even spine

vertices sequentially from left to right.

It is trivial to show that the above labeling scheme holds

the propeties from 1 to 3. To prove property 4, we divide the

edges of G into three sets E1, E2, E3 as described below.

• E1 contains the edges, having both end points in Level

L0.

• E2 contains the edges, having one end point in Level L0

and other in Level L1.

• E3 contains the edges, having one end point in Level L1

and other in Level L2.

Now based on the sets of edges of G, we have the following

three cases:

Case I (For edges of E1): We arrange the vertices of Level

L0 from left to right sequentially. According to the labeling

scheme, the label of ith vertex of Level L0 is
⌈

p

2

⌉

∗ q +
⌊

i
2

⌋

,

when i is even and pq +
⌈

p

2

⌉

∗ q +
⌊

p

2

⌋

+
⌈

i
2

⌉

when i is odd

(1 ≤ i ≤ p).

Now we decompose E1 into E11 and E12. So that, E11

contains the edges between (i−1)th and ith vertices of Level

L0 and E12 contains the edges between ith and (i + 1)th

vertices of Level L0, where i is even and 1 < i ≤ p.

For all the edges of E11 the labeling difference is

= (pq +
⌈p

2

⌉

∗ q +
⌊p

2

⌋

+

⌈

i− 1

2

⌉

)− (
⌈p

2

⌉

∗ q +

⌊

i

2

⌋

)

= pq +
⌊p

2

⌋

For all the edges of E12 the labeling difference is

= (pq +
⌈p

2

⌉

∗ q +
⌊p

2

⌋

+

⌈

i+ 1

2

⌉

)− (
⌈p

2

⌉

∗ q +

⌊

i

2

⌋

)

= pq +
⌊p

2

⌋

+ 1

As it can be trivially said that for G, |A| =
⌊

n
2

⌋

. We see

that, |A| ≤ (pq+
⌊

p

2

⌋

), (pq+
⌊

p

2

⌋

+1) ≤ |A|+
⌈

p

2

⌉

∗q. Which

concludes that, the claim is true for this case.

Case II (For edges of E2): We arrange the even spine vertices

sequentially from left to right, so that the label of ith even

spine vertex is
⌈

p

2

⌉

∗ q + i, where 1 ≤ i ≤
⌊

p

2

⌋

. We also

arrange the vertices of Level L1, attached with the even spine

vertices sequentially from left to right, so that the label of

jth vertex of Level L1, attached with ith even spine vertex is

pq +
⌈

p

2

⌉

∗ q + p + (i − 1)q + j, where 1 ≤ j ≤ q. So the

labeling difference between the ith even spine vertex and jth

vertex of Level L1, attached with ith even spine vertex is:

= (pq +
⌈p

2

⌉

∗ q + p+ (i− 1)q + j)− (
⌈p

2

⌉

∗ q + i)

= pq + p− q + i(q − 1) + j

Considering all the values of i and j, we see that |A| ≤
pq + p− q + i(q − 1) + j ≤ |A|+

⌈

p

2

⌉

∗ q.

Similarly the labeling difference between the ith odd spine

vertex and jth vertex of Level L1, attached with ith odd spine

vertex is (where 1 ≤ i ≤
⌈

p

2

⌉

and 1 ≤ j ≤ q) :

= (pq +
⌈p

2

⌉

∗ q +
⌊p

2

⌋

+ i)− ((i− 1)q + j)

= pq +
⌈p

2

⌉

∗ q +
⌊p

2

⌋

+ q + i(1− q)− j

The minimum value of pq+
⌈

p

2

⌉

∗q+
⌊

p

2

⌋

+q+ i(1−q)−j

is pq + p when i =
⌈

p

2

⌉

, j = q and the maximum value is

pq +
⌈

p

2

⌉

∗ q +
⌊

p

2

⌋

when i = 1, j = 1. Again we see that

|A| ≤ (pq + p), (pq +
⌈

p

2

⌉

∗ q +
⌊

p

2

⌋

) ≤ |A|+
⌈

p

2

⌉

∗ q.

Case III (For edges of E3): In similar way as case 2, it can

be proved that the claim is also true for all the edges of E3.

Thus concludes the proof.

Using Lemma 3.1, here we provide an antibandwidth label-

ing scheme for general itchy caterpillars with hair length 2 or

more.

Theorem 3.2. Let G be an itchy caterpillar, p be the number

of spine vertices, q be the number of hairs per spine vertices,

r be the length of each hair, n be the total number of vertices

of G. A and B be the two bipartition vertex set of G, such

that |A| ≤ |B|. Then G admits a vertex labeling Γ with the

following properties, when r ≥ 2:

(1) labels of the vertices of same set at Level Li are consec-

utive from left to right.

(2) labels of vertices of set A are from 1 to |A| and labels

for set B starts from |A|+ 1 to n consecutively.

(3) the lowest value of labels of vertices of A and the highest

value of labels of vertices of B lie in Level Lr−1.

(4) |A| ≤ δi ≤ |A|+
⌈

p

2

⌉

q, where δi is the labeling difference

between two neighbours of G in Γ.

Proof: First we decompose the vertices of G into two

bipartition vertex set A and B, such that the vertices of level

Lr−1, of hairs attached to odd spine vertices, goes to A. Then

according to Lemma 2.1, we see that |A| ≤ |B|. Now we

prove the claim by taking induction on r.

According to Lemma 3.1, We see that the claim is true,

when r = 2.



Let the claim holds for an itchy caterpillar G′, where the

number of spine vertices is p, number of hairs attached to each

spine vertex is q and the length of each hair is r − 1. Then

it is sufficient to prove that the claim also holds for an itchy

caterpillar G, where the number of spine vertices is p, number

of hairs attached to each spine vertex is q and the length of

each hair is r.

Now using the labeling Γ′ of G′, here we produce an

antibandwidth labeling Γ for G, as follows:

(1) construct G′ from G by deleting all the leaves of G. Let

A′ and B′ be the two bipartition vertex set of G′. Note

that |B| = |A′|+
⌈

p

2

⌉

q and |A| = |B′|+
⌊

p

2

⌋

q.

(2) as according to induction hypothesis, there is a labeling

scheme Γ′ for G′ with the described properties of the

claim, we label G′ with Γ′.

(3) alter the labeling of vertices of G′ such that, if the label

of any vertex of set A′ is i, then it becomes i+ |B′| and

if the label of any vertex of set B′ is j, then it becomes

j − |A′|.
(4) shift the label of vertex set A′ such that, if the label of

any vertex of set A′ is i, then it becomes i+ pq.

(5) install the deleted vertices to produce G from G′.

(6) assign labels from |B′|+1 to |B′|+
⌊

p

2

⌋

q to the leaves Set

A at Level Lr sequentially from left to right and assign

labels from |B′|+
⌊

p

2

⌋

q+1 to |B′|+ pq to the leaves of

Set B at Level Lr sequentially from left to right.

It can be trivially said that Γ holds the properties from 1 to

3.

Now we prove that Γ also holds the property 4. To do that,

first we decompose the edges of G into two sets E1, E2 as

follows:

• E1 holds the edges of E(G)∩E(G′). Note that E(G)∩
E(G′) = E(G′).

• E2 holds the edges other than E1 (edges incident to the

leaves of G).

Case I (for edges of E1): here we prove that Γ holds the

property 4, for all the edges of E1.

Let an edge ei is incident to vertex vx and vy , where eiǫE1,

vxǫA
′, vyǫB

′. In step 2, after producing the antibandwidth

labeling Γ′ of G′, vx is labeled with i and vy is labeled with

j, where 1 ≤ i ≤ |A′| and |A′|+ 1 ≤ j ≤ n. Now according

to the induction hypothesis, |A′| ≤ j − i ≤ |A′|+
⌈

p

2

⌉

q.

Now after doing steps 3 and 4, the label of vertex vx
becomes i + |B′| + pq and the label of vertex vy becomes

j − |A′|. Now the labeling difference of two end points of

edge ei is:

i+ |B′|+ pq − (j − |A′|) = |B′|+ |A′|+ pq − (j − i)

The value of |B′|+ |A′|+ pq− (j− i) is maximized, when

(j − i) = |A′| and the highest value is:

= |B′|+ pq

= |A|+
⌈p

2

⌉

q, as |A| = |B′|+
⌊p

2

⌋

q

The lowest value of |B′|+ |A′|+ pq− (j − i) is produced,

when (j − i) = |A′|+
⌈

p

2

⌉

q and that is:

= |B′|+
⌊p

2

⌋

q

= |A|, as |A| = |B′|+
⌊p

2

⌋

q

This concludes that, Γ holds the property 4 for all the edges

of E1.

Case II (for edges of E2): Here we prove that Γ, holds the

property 4 for all the edges of E2.

In step 5, we re-intsall the leaves of G. We see that the

leaves of G residing in vertex Set B are adjacent to vertices

of Set A of Level Lr−1 and the leaves residing in vertex Set

A are adjacent to vertices of Set B of Level Lr−1. In step 6,

we label the leaves of Set A from |B′| + 1 to |A|. Property

1 and 3 of Γ ensures that the labels of their adjacent vertices

are from n−
⌊

p

2

⌋

q to n sequentially making the difference of

|B|. Similarly the labeling difference of the leaves of Set B

and their adjacent vertices is |A|. This concludes the proof.

We observe that the lower bound produced by the labeling

scheme described in Theorem 3.2 is the same as millar-pritikin

labeling scheme. But the antibandwidth labeling scheme de-

scribed in this paper is easy to understand and more natural

for itchy caterpillars. The Corollary 3.3 shows that, for some

cases the antibandwidth values, produced by these two labeling

schemes are optimal. The proof of Corollary 3.3 is omitted in

this paper, because of being trivial.

Corollary 3.3. Let G be an itchy caterpillar, p be the number

of spine vertices of G, q be the number of hairs per spine

vertices of G, r be the length of hair of G, n be the number

of vertices of G, then the antibandwidth of G is ⌊n
2 ⌋ when,

• p is even

• p is odd, r is even. �

IV. ITCHY CATERPILLARS OF HAIR LENGTH 1

In this section, we study the antibandwidth problem for

itchy caterpillars of hair length 1. We provide an antibandwidth

labeling scheme that produces optimal result for this class

of graphs, which is the first non-trivial optimal result of

antibandwidth problem for any graph class.

Theorem 4.1. Let G be an itchy caterpillar, p be the number

of spine vertices of G, q be the number of hairs per spine

vertices of G, r be the length of hair of G, n be the number

of vertices of G, then the antibandwidth of G is n
2 for p is

even and
⌈

n−q

2

⌉

for p is odd, when r = 1.

We need the following lemmas to prove the above theorem.

Lemma 4.2. Let G be an itchy caterpillar, p be the number

of spine vertices of G, q be the number of hairs per spine



vertices of G, r be the length of hair of G, n be the number

of vertices of G. Then G admits a vertex labeling Γ, such that

the difference of the labelings of any two adjacent vertices is

at most
⌈

(n−q)
2

⌉

, when r = 1 and p is odd.

Proof: To prove this lemma by contradiction, it is suf-

ficent to prove that for an itchy caterpillar G, the minimum

labelling difference
⌈

(n−q)
2

⌉

+1 can not be acquired. To label

the vertices of G, we have a set of labels, N = {1, 2, 3, · · · , n}
with cardinality n.

To label G, first we split N into two sets N1 and N2 such

that one of the set (say, N1) has
⌈

(n−q)
2

⌉

+1 number of labels

and the other (say, N2) has n−
⌈

(n−q)
2

⌉

−1 number of labels,

as shown in Figure 4. In Figure 4, the lower consecutive half

of N are chosen for N1 and the upper consecutive half of N

are considered to be in N2. Let, b be the number of spine

vertices whose labels are chosen from N1 and 1 ≤ b ≤ p. For

adjacent vertices of the spine vertices labeled from N1 we are

bound to choose labels from set N2. Then the labels of N1

can be distributed as described below.

• b number of labels, are assigned to the corresponding

number of spine vertices of G.

• rest of the labels are assigned to the leaves of the other

p − b spine vertices (spine vertices for those, the labels

will be assigned from N2) and the number of such leaves

is (p− b) ∗ q.

The labels of N2 can be distributed as described below:

• p− b number of labels are assigned to the corresponding

number of remaining spine vertices of G.

• b ∗ q number of labels are assigned to the leaves of other

b spine vertices (spine vertices for those, the labels are

assigned from N1).

If we choose the labels in the way mentioned above, then no

two neighboring vertices are assigned with the labels from N1.

Now considering the values that b can have, which corresponds

to the arbitrarily choosing the number of labels for spine

vertices from any of the halves of N , the following two cases

can arise.

Case I:
⌈

p

2

⌉

≤ b.

In this case, the number of labels for the spine vertices

chosen from N1 is at least
⌈

p

2

⌉

. Let b =
⌈

p

2

⌉

+ i, such that

0 ≤ i ≤
⌊

p

2

⌋

and the number of labels needed to be in N2 is

|N2|
′. We can easily verify that the value of |N2|

′ must be,

= (p− b) + (b ∗ q)

= (p−
⌈p

2

⌉

− i) +
(⌈p

2

⌉

+ i
)

∗ q

=
n+ q − 3

2
+ i(q − 1) + 1.as p is odd.
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Fig. 4. Partitioning N into N1 and N2 (also N2 into N21 and N22).

But the value of |N2| is,

= n−

⌈

n− q

2

⌉

− 1

=
n+ q − 3

2
.

Here we see |N2|
′ − |N2| > 0, which means the number of

labels in N2 is less than the number of labels needed to be in

N2 and thus contradicts the initial assumption.

Case II:
⌈

p

2

⌉

> b.

Similarly this case corresponds to the number of labels for

the spine vertices chosen from N1 is at most
⌊

p

2

⌋

. Let b = i,

such that 0 ≤ i ≤
⌊

p

2

⌋

. The total number of labels needed to

be in N1 is i+(p− i)q. The minimum value of i+(p− i)q is
⌊

n+q

2

⌋

which can be found by putting, i =
⌊

p

2

⌋

. We see that

this minimum value is greater than the cardinality of N1. On

the other hand, the total number of labels needed to be in N2

is (p− i) + iq. The maximum value of which is
⌈

p

2

⌉

+
⌊

p

2

⌋

q.

We see that, this maximum value is less than the cardinality

of N2. At this point, as N2 has extra labels, we divide N2

into N21 and N22 as shown in Figure 4 and the labels from

N21 are added with N1 to meet up the shortage of N1. From

Figure 4, we see that this redistribution is possible without

violating the initial assumption.

Let the number of labels needed to be in N21 is |N21|
′. We

can easily verify that the minimum value (when i =
⌊

p

2

⌋

) of

|N21|
′ must be,

= b+ (p− b) ∗ q −

⌈

(n− q)

2

⌉

− 1

= pq + i(1− q)−

⌈

(n− q)

2

⌉

− 1

= q − 2.

But the value of |N21| is,

= n− 2

(⌈

n− q

2

⌉

− 1

)

= q − 3.

We see |N21|
′−|N21| > 0, which means the number of labels

in N21 is less than the number of labels needed to be in N21.

Hence the initial assumption is violated and our proof is done.

Lemma 4.3. Let G be an itchy caterpillar, p be the number

of spine vertices of G, q be the number of hairs per spine

vertices of G, r be the length of hair of G, n be the number

of vertices of G. Then G admits a vertex labeling Γ, such that

the difference between two neighbour vertices is at least n
2 for

p is even and
⌈

n−q

2

⌉

for p is odd, when r = 1.

Proof: We produce a vertex labeling Γ of the itchy

caterpillar G as shown in Figure 5, with the following labeling

scheme.

• assign label 1, to the first even spine vertex of G.

Continue labeling of the even spine vertices sequentially,

so that last even spine vertex is labeled with
⌊

p

2

⌋

.



• label hair vertices of the odd spine vertices sequentially

from
⌊

p

2

⌋

+ 1 to
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q.

• label hair vertices of the even spine vertices sequentially

from
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q + 1 to
⌊

p

2

⌋

+ p ∗ q.

• finally label the odd spine vertices sequentially from
⌊

p

2

⌋

+ p ∗ q + 1 to p ∗ q + p.

Showing that, Γ is the vertex labeling of G, such that the

difference between two neighbour vertices is at least n
2 for p

is even and
⌈

n−q

2

⌉

for p is odd in Γ, completes the proof of

this lemma.

To do that, we divide all the edged E(G) of G in vertex

labeling Γ, into three sets E1, E2, E3 as described below.

• E1 holds the edges between even spine vertices and the

vertices of their hairs.

• E2 holds the edges between odd spine vertices and the

vertices of their hairs.

• E3 holds the edges bewteen odd and even spine vertices.

First we prove that for all the edges in E1 the above claim

is true. Let i and j are two numbers such that 1 ≤ i ≤
⌊

p

2

⌋

and 1 ≤ j ≤ q, where i is the ith even vertex of the spine

and j is the index of the vetex of jth hair of that spine vertex,

provided that (i, j) ǫ E(G). So the label of vertex i is i and

the label of vertex j is
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q + (i − 1) ∗ q + j (see

the itchy caterpillar of Figure 5). The difference between the

labels of these two vertices is

=
⌊p

2

⌋

+
⌈p

2

⌉

∗ q + (i− 1) ∗ q + j − i

=
⌊p

2

⌋

+
⌈p

2

⌉

∗ q + j + (i− 1) ∗ q − i

For i = 1 and j = 1, we get the minimum value of the

above expression that is
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q. Which states that

the minimum value of the differences between the vertices of

end points of all the edges in E1 is
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q. We can

easily verify that
⌊

p

2

⌋

+
⌈

p

2

⌉

∗ q ≥ n
2 for any value of p and

q. Simillarly, we can easily show that, all the edges (which

represent labeling difference of their end point vertices) in E2

and E3 also satisfies the claim.

Proof of Theorem 4.1. For an itchy caterpillar, when p is

even and r = 1, Lemma 4.3 says that the antibandwidth is at

least n
2 , which is the trivial upper bound of antibandwidth for

any class of graphs. Considering this with Lemma 4.2 (non-

trivial upper bound for itchy caterpillars, when p is odd and

r = 1) along with Lemma 4.3 concludes the proof of Theorem

4.1.

We have the following corollary from Theorem 4.1, which

is trivial to show.
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Fig. 5. An itchy caterpillar with hair length 1

Corollary 4.4. Millar-Pritikin labeling scheme produces exact

antibandwidth value for itchy caterpillar with hair length 1.

�

V. CONCLUSION

In this paper, first we provided labeling schemes for itchy

caterpillars with hair length 2, and then we generalized the

labeling scheme for itchy caterpillars with hair length 2 or

more. We derived the lower bound for antibandwidth problem,

using the defined labeling scheme and showed that, for some

cases the result is optimal. Then we showed that the optimal

value of antibandwidth for itchy caterpillars with hair length 1,

is
⌊

n
2

⌋

when p is even and
⌈

(n−q)
2

⌉

when p is odd.
⌈

(n−q)
2

⌉

is

the first non-trivial upper bound of antibandwidth problem for

any class of graphs. We also showed that Millar and Pritikin

labeling scheme described in [10] also produces same set of

results. But the labeling scheme provided in this paper are

more intuitive, easy to understand and natural for the defined

class of graphs.

The antibandwidth problem still offers a wide range of

interesting open problems. It will be very interesting to find

any other graph classes, for which the antibandwidth is non-

trivial. Finding any general upper bound for the entire class of

itchy caterpillars is also open. Beside these, the hardness for

finding antibandwidth of general caterpillars, is also interesting

to investigate.
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