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ABSTRACT
Cryptographic API misuses, such as exposed secrets, predictable
random numbers, and vulnerable certificate verification, seriously
threaten software security. The vision of automatically screening
cryptographic API calls in massive-sized (e.g., millions of LoC) pro-
grams is not new. However, hindered by the practical difficulty
of reducing false positives without compromising analysis qual-
ity, this goal has not been accomplished. CryptoGuard is a set
of detection algorithms that refine program slices by identifying
language-specific irrelevant elements. The refinements reduce false
alerts by 76% to 80% in our experiments. Running our tool, Cryp-
toGuard, on 46 high-impact large-scale Apache projects and 6,181
Android apps generatedmany security insights. Our findings helped
multiple popular Apache projects to harden their code, including
Spark, Ranger, and Ofbiz. We also have made progress towards the
science of analysis in this space, including manually analyzing 1,295
Apache alerts, confirming 1,277 true positives (98.61% precision),
and in-depth comparison with leading solutions including CrySL,
SpotBugs, and Coverity.
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1 INTRODUCTION
Cryptographic algorithms offer provable security guarantees in the
presence of adversaries. However, vulnerabilities and deficiencies
in low-level cryptographic implementations seriously reduce the
guarantees in practice [16, 25, 28, 30, 37, 38]. Researchers also found
misusing cryptographic APIs is not unusual in application-level
code [33]. Causes of these vulnerabilities are multi-fold, which in-
clude complex APIs [13, 58], the lack of cybersecurity training [55],
the lack of tools [15], and insecure and misleading forum posts
(such as on StackOverflow) [14, 55]. Some aspects of security li-
braries (such as JCA, JCE, and JSSE1) are difficult for developers to
use correctly, e.g., certificate verification [39] and cross-language
encryption and decryption [55].

In this work, we focus on the goal of screening massive-sized
Java projects for cryptographic API misuses. Specifically, we aim to
design a static analysis tool that has no or few false positives (i.e.,
false alarms) and can be routinely used by developers.

Efforts to screen cryptographic APIs have been previously re-
ported in the literature, including static analysis (e.g., CrySL [47],
FixDroid [60], CogniCrypt [46], CryptoLint [33]) and dynamic anal-
ysis (e.g., SMV-Hunter [68], and AndroSSL [36]), as well as manual
code inspection [39]. Static and dynamic analyses have their re-
spective pros and cons. Static methods do not require the execution
of programs. They scale up to a large number of programs, cover a
wide range of security rules, and are unlikely to have false negatives
(i.e., missed detections). Dynamic methods, in comparison, require
one to trigger and detect specific misuse symptoms at runtime
(e.g., misconfigurations of SSL/TLS). The advantage of dynamic
approaches is that they tend to produce fewer false positives (i.e.,
false alarms) than static analysis. Deployment-grade code screening
tools need to be scalable with wide coverage. Thus, static program
analysis approach is favorable. However, existing static analysis-
based tools (e.g., [33, 46, 47, 60]) are not optimized to operate on
the scale of massive-sized Java projects (e.g., millions of LoC).

Existing static analysis tools are also limited in detecting SS-
L/TLS API misuses and are not designed to detect complex misuse
scenarios. For example, MalloDroid [35] uses a list of known in-
secure implementations of HostnameVerifier and TrustManager
to screen apps. Google Play recently deployed an automatic app
checking mechanism for SSL/TLS hostname verifier and certificate
verification vulnerabilities [12]. However, the inspection appears to
only target obvious misuse scenarios, e.g., return true in verify
method or an empty body in checkServerTrusted [5].

1JCA, JCE, and JSSE stand for Java Cryptography Architecture, Java Cryptography
Extension, and Java Secure Socket Extension, respectively.
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We made substantial progress toward building a high accuracy
and low runtime static analysis solution for detecting cryptographic
and SSL/TLS API misuse vulnerabilities. Our tool,CryptoGuard,
is built on specialized forward and backward program slicing tech-
niques. These slicing algorithms are implemented by using flow-,
context- and field-sensitive data-flow analysis.

Although program slicing is a well-known technique for identi-
fying the set of instructions that influence or are influenced by a
program variable, its direct application to screening cryptographic
implementations has several problems, which are explained next.

Detection accuracy. A challenging problem is the excessive num-
ber of false positives that basic static analysis (including slicing)
generates. Several types of detection require one to search for con-
stants or values from predictable APIs, e.g., passwords, seeds, or
initialization vectors (IVs). However, benign constants or irrelevant
parameters may be mistaken as violations (e.g., array/collection
bookkeeping constants). Another source of detection inaccuracy
comes from the assumption that all the system and runtime libraries
are present during the analysis. This assumption holds for Android
apps, but not necessarily for Java projects.

CryptoGuard addresses the false positive problem with a set
of refinement algorithms derived from empirical observations of
common programming idioms and language restrictions. The re-
finements remove irrelevant resource identifiers, arguments about
states of operations, constants on infeasible paths, and bookkeeping
values. For eight of our rules, these refinement algorithms reduce
the total number of alerts by 76% in Apache and 80% in Android
(Figure 3). Our manual analysis shows that CryptoGuard has a
precision of 98.61% on Apache.

Efficiency and coverage. Analysis techniques that build a super
control-flow graph of the entire program would incur significant
memory and runtime overhead. In contrast, our on-demand slicing
algorithms are lightweight, which start from the slicing criteria and
only propagate to the methods that have the potential to impact
security. Hence, a large portion of the code base is not touched.

Our technical contributions are summarized as follows.
• We designed and implemented a set of analysis algorithms for
detecting cryptographic and SSL/TLS API misuses. Our static
code checking tool, CryptoGuard, is designed for developers
to use routinely on large Java projects. Besides open-sourcing
CryptoGuard2, we are currently integrating it with the Soft-
ware Assurance Marketplace (SWAMP) [32], a well-known
free software security analysis platform.

• We gained numerous security insights from screening 46
Apache projects. For 15 of our rules, we observed violations
in Apache projects (Table 9). 39 out of the 46 projects have
at least one type of cryptographic misuses, and 33 projects
have at least two. We reported our security findings to Apache,
some of which have been promptly fixed. In Section 7, we
share our experience of disclosing to the Apache teams and
their pragmatic constraints e.g., backward compatibility.

• Our evaluation on 6,181 Android apps shows that around
95% of the total vulnerabilities come from libraries that are
packaged with the application code. Some libraries are from
Google, Facebook, Apache, and Tencent (Table 5). We observe

2Available at https://github.com/CryptoGuardOSS/cryptoguard under GPL v3.0.

violations in most of the categories, including hardcoded key-
Store passwords, e.g., notasecret is used in multiple Google
libraries (Table 4). We also detected multiple SSL/TLS (MitM)
vulnerabilities that Google Play’s automatic screening seemed
to have missed.

• We created a benchmark named CryptoApi-Bench with
112 unit test cases.3 CryptoApi-Bench contains basic intra-
procedural instances, inter-procedural cases, field sensitive
cases, false positive tests, and correct API uses.

2 THREAT MODEL AND OVERVIEW
We describe our threat model and discuss the technical challenges
associated with detecting these threats with static program analysis.
For each challenge, we briefly overview our solution.

2.1 Threat Model
We summarize the vulnerabilities that CryptoGuard aims to detect
below and in Table 1. We also rank their severity.
1. Vulnerabilities due to predictable secrets. Software with pre-
dictable cryptographic keys and passwords are inherently inse-
cure [33]. Here, we consider the use of any constants, as well as
values that are derived from constants or API calls with predictable
outputs (e.g., DeviceID, Timestamps) to be insecure.
2. Vulnerabilities fromMitM attacks on SSL/TLS. Improper cus-
tomization of Java Secure Socket Extension (JSSE) APIs may re-
sult in man-in-the-middle (MitM) vulnerabilities [35, 39]. Cryp-
toLint [33] does not detect these vulnerabilities.
3. Vulnerabilities from predictable PRNGs. Predictable pseu-
dorandom number generators (PRNGs) are a major source
of vulnerabilities [21, 40, 42]. Using java.util.Random
as a PRNG is insecure [7, 45]. In addition, seeds for
java.security.SecureRandom [8] should not be predictable.
4. Vulnerabilities fromCPA. Ciphertexts should be indistinguish-
able under chosen plaintext attacks (CPA) [33]. Static salts make
dictionary attacks easier on password-based encryption (PBE). In
addition, static initialization vectors (IVs) in cipher block chaining
(CBC) and electronic codebook (ECB) modes are insecure [20, 49].
5. Vulnerabilities from feasible bruteforce attacks. MD5 and
SHA1 are susceptible to hash collision [69, 70] and pre-image [9,
27] attacks. In addition, bruteforce attacks are feasible for 64-bit
symmetric ciphers (e.g., DES, 3DES, IDEA, Blowfish) [22]. 1024-
bit RSA/DSA/DH and 160-bit ECC are also weak [4]. RFC 8018
recommends at least 1000 iterations for PBE [56].
How severe are these vulnerabilities? Each case has specific attack
scenarios documented in the literature. To prioritize alerts, we
categorize their severity into high, medium, and low, based on i)
attacker’s gain and ii) attack difficulty. Vulnerabilities from pre-
dictable secrets and SSL/TLS MitM are immediately exploitable
and substantially benefit attackers. In Android, an application can
only access its own KeyStore. Hence, hard-coded passwords are
less harmful in Android. However, privilege escalation attacks by-
passing this restriction have been demonstrated [72]. Commercially
available rainbow tables allow attackers to easily obtain pre-images
ofMD5 and SHA1 hashes for typical passwords [10]. Hash collisions
for these algorithms enable attackers to forge digital signatures

3Our benchmark is available at https://github.com/CryptoGuardOSS/cryptoapi-bench.
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1 class PasswordEncryptor {

2
3 Crypto crypto;

4
5 public PasswordEncryptor (){

6 String passKey = PasswordEncryptor

.getKey("pass.key");

7 crypto = new Crypto(passKey ); p

8 }

9
10 byte[] encPass(String [] arg){

11 return crypto.encrypt(arg[0], arg [1]); p

12 }

13
14 static String getKey(String src){

15 String key = Context.getProperty(src);

16 if (key == null) {

17 key = "defaultkey";

18 }

19 return key;

20 }

21 }

22 class Crypto {

23
24 String ALGO = "AES";

25 String ALGO_SPEC = "AES/CBC/NoPadding";

26 String defaultKey;

27 Cipher cipher;

28
29 public Crypto(String defKey ){

30 cipher = Cipher.getInstance(ALGO_SPEC );

31 defaultKey = defKey; // assigning field

32 }

33
34 byte[] encrypt(String txt ,String key){

35 if (key == null){

36 key = defaultKey; f

37 }

38 byte[] keyBytes = key.getBytes("UTF-8");

39 byte[] txtBytes = txt.getBytes ();

40 SecretKeySpec keySpc =

new SecretKeySpec(keyBytes, ALGO);

41 cipher.init(Cipher.ENCRYPT_MODE ,keySpc );

42 return cipher.doFinal(txtBytes );}}
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Figure 1: (a) An example demonstrating various features of CryptoGuard. Crypto class is used for generic AES encryption and
PasswordEncryptor class uses Crypto for password encryption. f indicates influence through the fields and p indicates
influence through the method parameters. (b) Partial data dependency graph for keyBytes variable.

or break the integrity of any messages [23, 69]. Therefore, these
vulnerabilities are classified as high risks. Vulnerabilities from pre-
dictability and CPA provide substantial advantages to attackers by
significantly reducing attack efforts. They are medium-level risks.
Brute-forcing ciphers, requiring non-trivial effort, is low risk.

2.2 Technical Challenges and Solution Overview
The task of screening millions of lines of code for cryptographic
API misuses poses a set of technical challenges.

Technical Challenge I: False positives.
1. False positives due to phantom methods. A method is phantom
if its body is not available during analysis. Unlike Android, Java
web applications have phantom libraries. A non-system library
that is not packaged with the project binaries is referred to as a
phantom library. Existing cryptographic misuse vulnerability solu-
tions (e.g., CryptoLint [33], CrySL [47]) are not designed to handle
phantom libraries, which may cause false positives. For example,
in Figure 1(a) if the class Context is a member of a phantom li-
brary, then getProperty method (Line 15) is a phantom method.
The data-flow diagram in Figure 1(b) shows that a straightforward
def-use analysis would likely report pass.key as a hard-coded key,
since it cannot explore getProperty method at Line 15.

Our solution is a set of crypto-specific methods to refine slicing
outputs (Section 5). For example, examining the context reveals
that pass.key is used as an identifier of a key and has no security
influence on keyBytes. Thus, it can be safely discarded.
2. False positives due to data structures. Constants for bookkeeping
data structures are another major source of false positives that are
largely uncovered in the existing literature (e.g., [33, 47]). Most
frequently used data structures include lists, maps, and arrays. For
example, a data-structure-unaware analysis would likely report “1”
from Line 11 (Figure 1(a)) as a hard-coded key, as it influences the

key parameter of encryptmethod (Figure 1(b)). Our refinement al-
gorithms track and discard any kinds of data-structure-bookkeeping
constants (Section 5).

Technical Challenge II: precision vs. runtime tradeoff. For a large
project with millions LoC, building a super-CFG is costly and un-
necessary. Cryptographic functionality is often confined within a
small fraction of the project. However, most flow-, context- and
field-sensitive analysis based tools (e.g., [33, 47]) appear to build
a super control-flow graph, e.g., by superimposing the project’s
call graph over control-flow graphs of methods, adding call edges
between invoke instructions, method entries, and exits.

In contrast, we adopt the following more scalable approaches.
1. Control the depth of orthogonal explorations. Most of our cryp-
tographic vulnerabilities involve finding constants. A distinguish-
ing feature of constants is that they require no or few processing
before use. Generally, processing is done by orthogonal method
invocations. The clipping of orthogonal explorations may impact
the detection accuracy and runtime. Based on our experiments
in Section 5.4, we set the depth of orthogonal exploration to 1 in
our detection. We use similar techniques as in phantom methods
handling to reduce the false positives introduced by clipping.
2. Demand-driven analysis.Our flow- and context- sensitive analysis
is demand driven. We perform on-demand inter-procedural back-
ward data flow analysis to perform backward slicing, where the
analysis starts from the slicing criteria and propagates upward and
orthogonally on-demand. For example, in Figure 1(a), a propagation
from encrypt method to encPass method, is an upward propaga-
tion. A propagation to orthogonal method invocations at Line 6 and
38 are orthogonal propagation. Our on-demand field sensitivity is
applied to a field only if it is used in our inter-procedural backward



Table 1: Cryptographic vulnerabilities, properties, and static analysis methods used. High, medium, and low risk levels are
denoted by H/M/L, respectively. CPA stands for chosen ciphertext attack, MitM for man-in-the-middle, C/I/A for confidential-
ity, integrity, and authenticity, respectively. ↑means backward slicing and ↓means forward slicing. Slicing is inter-procedural
unless otherwise specified (e.g., intra, both). Refinement insights are applied for all the inter-procedural backward slicing.

No Vulnerabilities Attack Type Crypto Property Severity Our Analysis Method

1 Predictable/constant cryptographic keys.
Predictable Secrets

Confidentiality H ↑ slicing & ↓ slicing
2 Predictable/constant passwords for PBE Confidentiality H ↑ slicing & ↓ slicing
3 Predictable/constant passwords for KeyStore Confidentiality H ↑ slicing & ↓ slicing
4 Custom Hostname verifiers to accept all hosts

SSL/TLS MitM

C/I/A H ↑ slicing (intra)
5 Custom TrustManager to trust all certificates C/I/A H ↑ slicing (intra)
6 Custom SSLSocketFactory w/o manual Hostname verification C/I/A H ↓ slicing (intra)
7 Occasional use of HTTP C/I/A H ↑ slicing
8 Predictable/constant PRNG seeds Predictability Randomness M ↑ slicing & ↓ slicing
9 Cryptographically insecure PRNGs (e.g., java.util.Random) Randomness M Search
10 Static Salts in PBE

CPA
Confidentiality M ↑ slicing & ↓ slicing

11 ECB mode in symmetric ciphers Confidentiality M ↑ slicing
12 Static IVs in CBC mode symmetric ciphers Confidentiality M ↑ slicing & ↓ slicing
13 Fewer than 1,000 iterations for PBE

Brute-force

Confidentiality L ↑ slicing & ↓ slicing
14 64-bit block ciphers (e.g., DES, IDEA, Blowfish, RC4, RC2) Confidentiality L ↑ slicing
15 Insecure asymmetric ciphers (e.g, RSA, ECC) C/A L ↑ slicing & ↓ slicing (both)
16 Insecure cryptographic hash (e.g., SHA1, MD5, MD4, MD2) Integrity H ↑ slicing

slices. A field’s influence is considered indirect, if the field is ac-
cessed using orthogonal method invocations (i.e., getter methods).
We refer to this field sensitivity as data-only class field-sensitivity.
3. Subproject awareness. Code in large projects is usually organized
into subprojects, packaged as separate .jars.CryptoGuard creates
and consults a directed acyclic graph (DAG) representing subproject
dependencies. This approach i) excludes unnecessary subprojects
and ii) analyzes independent sub-projects concurrently.

3 MAP VULNERABILITIES TO ANALYSIS
It is important to map cryptographic properties to concrete Java
programming elements that can be statically enforced. We break
down the detection plan into one or more abstract steps so that
each step can be mapped to a single round of static analysis.

In this section, we illustrate the process of mapping crypto-
graphic vulnerabilities to concrete program analysis tasks. This
mapping process is manual and only needs to be performed
once for each vulnerability. In what follows, we use rule i to re-
fer to the detection of vulnerability i in Table 1. For example,
in Rule 4, we detect the abuse of HostnameVerifier interface.
Ideally, an implementation of HostnameVerifier must use the
javax.net.ssl.SSLSession parameter verify method to verify
the hostname. Using the return statement as the slicing criterion,
we perform intra-procedural backward slicing of verify method
to implement this rule.

Rule 5 is to detect the abuse of the X509TrustManager interface.
We reduce the task to detecting 3 concrete cases: i) throwing no
exception after validating a certificate in checkServerTrusted, ii)
unpinned self-signed certificate with an expiration check, and iii)
not providing a valid list of certificates in getAcceptedIssuers.
For Case i), intuitively, our program analysis needs to search for
the occurrences of throw or propagated exception. throw is the
slicing criterion in the (intra-procedural) backward slicing. Simple
parsing is inadequate, as the analysis needs to learn the type of the
thrown exception.

Rule 6 is to detect whether any method uses SSLSocket directly
without performing hostname verification. Intuitively, to detect
this vulnerability, we need to track whether an SSLSocket created
from SSLSocketFactory influences the SSLSession parameter of
a verifymethod (of a HostnameVerifier) invocation. In addition,
we also need to check whether the return value of the verify
method is used in a condition checking statement (e.g., if). For
detection, we use forward program slicing to identify all the in-
structions that are influenced by the SSLSocketFactory instance.
Among these instructions, we examine three cases i) an SSLSocket
is created, ii) an SSLSession is created and used in verify, and
iii) the return value of verify method is used to make decisions.
These three cases represent a correct use of SSLSocketwith proper
hostname verification.

Rule 15 is to detect insecure asymmetric cipher configurations
(e.g., 1024-bit RSA). A more concrete goal is to detect an insecure
default key size use and an explicit definition of insecure key size.
The tasks of program analysis are to determine a) whether the key
size is defined explicitly or by default, b) the statically defined key
size, and c) the key generation algorithm. For Task a), our analysis
uses forward slicing to determine whether the initializemethod
is invoked to set the key size of a key-pair generator. For Tasks b)
and c), we use two rounds of backward program slicing to determine
the key size and algorithm, respectively.We also employ on-demand
field sensitivity for data-only classes in Task b). The analyses for
Rule 15 are the most complex in CryptoGuard.

Mappings for other rules can be deduced from Table 1. For ex-
ample, ↑ in Rules 1 & 2 means these rules are implemented using
inter-procedural backward slicing and ↓ indicates inter-procedural
forward slicing is used for on-demand data-only class field sen-
sitivity. We list the slicing criteria in Tables 11, 12 and 13 in the
appendix.

4 CRYPTO-SPECIFIC SLICING
We specialize static def-use analysis [74] and forward and backward
program slicings [52] for detecting Java cryptographic API misuses.



We break down the detection strategy into one or more steps, so
that a step can be realized with a single round of program slicing.
After performing the slicing, each program slice is analyzed to find
the presence of a vulnerability. Our 16 categories of vulnerabilities
require different program analysis methods for detection. Table 1
summarizes slicing techniques to detect each of the vulnerabilities.
General-purpose slicing alone is inadequate. Thus, we explain our
solution for overcoming the accuracy challenge in Section 5.

A definition of variable v is a statement that modifies v (e.g.,
declaration, assignment). A use of variable v is a statement that
reads v (e.g., a method call with v as an argument). Def-use data-
flow analysis or def-use analysis identifies the definition and use
statements and describes their dependency relations. Given a slicing
criterion, which is a statement or a variable in a statement (e.g., a
parameter of an API), backward program slicing is to compute a
set of program statements that affect the slicing criterion in terms
of data flow. Given a slicing criterion, forward program slicing is
to compute a set of program statements that are affected by the
slicing criterion in terms of data flow. Given a program and a slicing
criterion, a program slicer returns a list of program slices. Intra-
procedural program slicing mechanisms use def-use analysis to
compute slices.

To confine inter-procedural backward slicing within security
code regions, the analysis starts from cryptographic APIs and fol-
lows their influences recursively. This approach effectively skips
the bulk of the functional code and substantially speeds up the
analysis.
Slicing Criteria The choice of slicing criterion directly impacts
the analysis outcomes. We choose slicing criteria based on sev-
eral factors, including relevance to the vulnerability, simplicity of
checking rules, shared across multiple projects. Our slicing criteria
and corresponding APIs are shown in Tables 11, 12, and 13 in the
appendix.
Backward Slicing For inter-procedural backward slicing, the slic-
ing criteria are defined as the parameters of a target method’s
invocation. For example, to find predictable secrets (in Rules 1-3),
we use the key parameter of the constructors of SecretKeySpec
as the slicing criterion. For intra-procedural backward slicing, we
define three types of slicing criteria: i) parameters of a method,
ii) assignments, and iii) throw and return. For example, to detect
insecure hostname verifiers that accept all hosts (in Rule 4), we use
the return statement in the verifymethod as the slicing criterion.
Intra-procedural backward slicing. The purpose of intra-procedural
backward slicing is two-fold. It is used independently to enforce se-
curity as well as a building block of inter-procedural back program
slicing. The intra-procedural program slicing utilizes the def-use
property of a statement to decide whether a statement should be
included in a slice or not. Our implementation utilizes the worklist
algorithm from the intra-procedural data-flow analysis framework
of Soot. During this process, if any orthogonal method invocations
are encountered, it recursively slices them to collect the arguments
and statements that influence any field or return statements within
that orthogonal methods. To reduce runtime overhead, such or-
thogonal method explorations are clipped at a pre-configurable
depth. We use refinement insights in Section 5 to exclude security
irrelevant instructions that basic use-def analysis cannot identify.

$r1.setText("mytext");
$r1.setKey("mykey");
...
key = $r1.getKey();

Figure 2: Indirect field access using orthogonal invocations
on data-only class object $r1.

On-demand Inter-procedural backward slicing. This algorithm per-
forms the upward propagation of the analysis. Our inter-procedural
backward slicing builds on intra-procedural backward slicing. Ma-
jor steps of the algorithm are as follows. i) We build a caller-callee
relationship graph of all the methods of the program. The call-graph
construction uses class-hierarchy analysis. ii) We identify all the
callsites of the method specified in the slicing criterion. A callsite
refers to a method invocation. iii) For all the callsites, we obtain all
the inter-procedural backward slices by invoking intra-procedural
slicing recursively to follow the caller chain. iv) Our procedure
is field sensitive. Typical field initialization statements are assign-
ments. After encountering a field assignment, the analysis follows
the influences through fields, recursively.
Forward Slicing Some of our analysis demands forward slicing,
which inspects the statements occurring after the slicing criterion.
Intra-procedural forward slicing. We design intra-procedural for-
ward slicing for Rules 6 (SSLSocketFactory w/o Hostname verifi-
cation) and 15 (Weak asymmetric crypto). The operation of intra-
procedural forward slicing is similar to that of intra-procedural
backward slicing. In forward slicing, we choose assignments as the
slicing criteria. The traversal follows the order of the execution, i.e.,
going forward. Because problematic code regions for Rules 6 and
15 are confined within a method, their forward slicing analyses do
not need to be inter-procedural.
Inter-procedural forward slicing.Given an assign instruction or a con-
stant as the slicing criterion, we perform the inter-procedural for-
ward slicing to identify instructions that are influenced by the slic-
ing criterion in terms of def-use relations. Our inter-procedural for-
ward slicing operates on the slices obtained from inter-procedural
backward slicing. The latter produces an ordered collection of in-
structions combined from all visited methods.

We define a class as a data-only class, if the fields of the class
are only visible within orthogonal method invocations. We use
inter-procedural forward slicing for on-demand field sensitivity of
data-only classes, as the field sensitivity during upward propagation
(inter-procedural backward slicing) does not cover them. In Figure 2,
$r1 is an object of data-only class, where its fields are accessed
indirectly with an orthogonal method (i.e, getKey) invocation. Given
a constant, using inter-procedural forward slicing, CryptoGuard
determines whether the constant influences any field of a data-only
class object and records it. Later on, when it encounters an assign
invocation on the same object and observes that the previously
recorded field influences the return statement, then it reports the
constant. Through this on-demand field sensitivity for data-only
class, CryptoGuard knows that constant mytext (Figure 2) is not
a hard-coded key. ↓ in Table 1 represents the use of forward slicing
for on-demand data-only class field sensitivity 4.

4Current prototype uses this field sensitivity for 8 rules.



5 REFINEMENT FOR FP REDUCTION
We design a set of refinement algorithms to exclude security irrele-
vant instructions to reduce false alarms. These refinement insights
(RI) are deduced by observing common programming idioms and
language restrictions. We also discuss the possibility of false nega-
tives (i.e., missed detection).

5.1 Overview of Refinement Insights (RI)
Eight of our rules (1, 2, 3, 8, 10, 12, 13 and 15) require identifying
constants/predictable values in a program slice. The purpose is to
ensure that no data (e.g., cryptographic keys, passwords, IVs, and
seeds) is hardcoded or solely derived from any hardcoded values.
Use of any predictable values (e.g., Timestamp, DeviceID) is also
insecure for Rules 1, 2, 3 and 8. However, many constants do not
impact security. We refer to them as pseudo-influences. Pseudo-
influences are a major source of false positives. Based on empir-
ical observations of common programming idioms and language
restrictions, we have five strategies to systematically remove irrele-
vant constants/predictable values from slices and reduce pseudo-
influences, which are summarized next.

• RI-I: Removal of state indicators. We discard constants/pre-
dictable values that are used to describe the state of a variable
during an orthogonal method invocation.

• RI-II: Removal of resource identifiers. We discard constants/pre-
dictable values that are used as the identifier of a value source
during an orthogonal method invocation.

• RI-III: Removal of bookkeeping indices. We discard con-
stants/predictable values that are used as the index or size of
any data structures. Specifically, RI-III discards any influences
on i) size parameter of an array or a collection instantiation,
ii) indices of an array, iii) indices of a collection.

• RI-IV: Removal of contextually incompatible constants.We dis-
card constants/predictable values, if their types are incompati-
ble with the analysis context. For example, a boolean variable
cannot be used as a key, IV, or salt.

• RI-V: Removal of constants in infeasible paths. Some constant
initializations are updated along the path to the slicing crite-
rion. We need to discard the initializations that do not have a
valid path of influence to the criterion.

RI-I, RI-II and RI-IV are used to handle the clipping orthogonal
method explorations, which can occur due to phantom method
invocations or pre-configured clipping at a certain depth. RI-III
is used to achieve data structure awareness and RI-V are used to
compensate path insensitivity. Next, we highlight the details of two
refinement insights based on removing state indicators and resource
identifiers. Details for other RIs can be found in the appendix.

5.2 RI-I: Removal of State Indicators
Clipping orthogonal method exploration can cause false positives,
if the arguments of method is used to describe the state of a variable.
Consider UTF-8 in Line 38 of Figure 1(a). Its Jimple5 representa-
tion is as follows, where $r2 represents variable key, $r4 repre-
sents keyBytes, and virtualinvoke is for invoking the non-static
method of a class.

5Jimple is an intermediate representation (IR) of a Java program.

$r4 = virtualinvoke $r2.<java.lang.String: byte[]

getBytes(java.lang.String)>("UTF-8")

If the analysis is clipped so that it cannot explore the getBytes
method, then a def-use analysis shows that constant UTF-8 influ-
ences the value of $r4 (i.e., keyBytes). Thus, a straightforward
detection method would report UTF-8 as a hardcoded key. How-
ever, UTF-8 is for describing the encoding of $r2 and can be safely
ignored. We refer to this type of constants as state indicator pseudo-
influence.

The use of refinement insights has direct impact on analysis
outcomes. For example, discarding arguments of virtualinvoke
may generate false negatives. Suppose virtualinvoke is used to set
a key in a KeyHolder instance with some constant: virtualinvoke
$r5.<KeyHolder: void setKey(java.lang.String)>("abcd").
Constant abcd needs to be flagged. On the contrary, we observe
that arguments of virtualinvoke appearing in assign statements
are typically used to describe the state of a variable and can be
ignored. Thus, RI-I states that i) arguments of any virtualinvoke
method invocation in an assignment instruction can be regarded
as pseudo-influences, and ii) any constants that influence these
arguments can also be discarded.

5.3 RI-II: Removal of Source Identifiers
Another type of pseudo-influences due to the clipping of orthogonal
method exploration is the identifiers of value sources. We use an
example to illustrate the importance of this insight. For the code
below, a straightforward analysis would flag constant ENCRYPT_KEY.
However, it is an identifier for retrieving a value from a Java Map
data structure, and thus a false positive.

$r30 = interfaceinvoke r29.<java.util.Map: java.lang.Object

get(java.lang.Object)>("ENCRYPT_KEY")

i) Retrieving values from an external source. Static method invoca-
tions (staticinvoke in Jimple) in assign statements are typically
used to read values from external sources, e.g., Line 15 in Figure 1(a):

$r4 = staticinvoke <Context: java.lang.String

getProperty(java.lang.String)>(src)

Variable src refers to the identifier, not the actual value of the
key. Thus, it is a pseudo influence. To avoid such pseudo-influences,
RI-II discards any arguments of staticinvoke that appear in an
assignment. Although staticinvoke may be used to transform
a value from one representation to another, it is unlikely to use
staticinvoke to transform a constant.

5.4 Evaluation of Refinement Methods
We compared the numbers of reported alerts before and after em-
ploying the five refinement algorithms for 46 Apache projects and
6,181 Android apps. Our experiments show that refinement algo-
rithms reduce the total alerts by 76% in Apache and 80% in Android.
For Apache projects, we manually confirmed that all the removed
alerts are indeed false positives6. All constant-related rules (in-
cluding 1, 2, 3, and 12) greatly benefit from the refinements and
have significant reduction of irrelevant alerts. Results for top six
rules with maximum reductions are shown in Figure 3. The detailed
breakdown is shown in Figure 7 in the appendix. The most effective
6Regarding the validity of the manual analysis, the manual confirmation of alerts was
conducted by a second-year Ph.D. student with a prior Master degree in cybersecurity
(the second author), under the close guidance of a professor and a senior Ph.D. student
(the first author).
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Figure 3: Reduction of false positives with refinement in-
sights in 46 Apache projects (94 root-subprojects) and 6,181
Android apps. Top 6 rules with maximum reductions are
shown.

refinement insight for Apache and Android are RI-III (removal of
array/collection bookkeeping information).

With refinements enabled, there are a total of 1,295 alerts for
the 46 Apache projects. Our careful manual source-code analysis
confirms that 1,277 alerts are true positives, resulting in a preci-
sion of 98.61%. Out of the 18 false positives, 1 case is due to path
insensitivity and 17 to clipping orthogonal explorations (discussed
in Section 7). All experiments reported in the next section were
conducted with refinements enabled. Refinements may cause false
negatives, which we discuss in Section 7.
Impact of Orthogonal Exploration Depth. To measure the im-
pact of the orthogonal exploration depth, we conducted an experi-
ment with 30 Apache root-subprojects and varied the clipping from
depth 1 to 10. The depth of orthogonal exploration refers to the dis-
tance of an orthogonal method from the main slice. An orthogonal
method at depth 1 is a method invoked by the main slice.

The results are shown in Figure 4. The total number of discovered
constants across all projects increases slightly with the depth (Fig-
ure 4(a) right Y-axis). However, our manual analysis revealed that
none of the new constants is a true positive, i.e., the new constants
are false positives. Thus, the increase of the orthogonal exploration
depth does not improve the recall in this specific experiment, caus-
ing a decrease in the F1 score (Figure 4(a) left Y-axis). Interestingly,
the analysis runtime does not increase with the increasing depth
(Figure 4(b)). The average runtime for the 30 root-subprojects is
presented in Table 7 in the appendix. Figure 4(c) shows that the
number of inter-procedural slices and their average sizes are dras-
tically reduced when the depth increases from 1 to 2. When the
analysis explores inside a method, influences on an argument of
an orthogonal invocation might become irrelevant, causing this
drastic reduction. Given these observations, we set the orthogonal
exploration depth to 1 for the rest of our experiments, as it returns
the fewest number of irrelevant constants.

6 SECURITY FINDINGS AND EVALUATION
Our experimental evaluation answers the following questions.

• What are the security findings in Apache Projects? Do Apache
projects have any high-risk vulnerabilities such as hardcoded
secrets or MitM vulnerabilities? (Section 6.1)

Table 2: Breakdown of accuracy in Apache projects. Du-
plicates are handled at root-subproject level (total 82 root-
subprojects) level. For Rules 1, 2, 3, 8, 10, 12, each constan-
t/predictable value of an array/collection is considered as an
individual violation.

Rules Total Alerts # True Positives Precision

(1,2) Predictable Keys 264 248 94.14 %
(3) Hardcoded Store Pass 148 148 100 %
(4) Dummy Hostname Verifier 12 12 100 %
(5) Dummy Cert. Validation 30 30 100 %
(6) Used Improper Socket 4 4 100 %
(7) Used HTTP 222 222 100 %
(8) Predictable Seeds 0 0 0%
(9) Untrusted PRNG 142 142 100 %
(10) Static Salts 112 112 100 %
(11) ECB mode for Symm. Crypto 41 41 100 %
(12) Static IV 41 40 97.56 %
(13) <1000 PBE iterations 43 42 97.67 %
(14) Broken Symm. Crypto Algorithm 86 86 100 %
(15) Insecure Asymm. Crypto 12 12 100 %
(16) Broken Hash 138 138 100 %
Total 1,295 1,277 98.61 %

• What are the security findings in Android Apps? Do third-
party libraries have any high-risk vulnerabilities? (Section 6.2)

• How does CryptoGuard compare with CrySL, SpotBugs, and
the free trial version of Coverity on benchmarks or real-world
projects? (Section 6.3)

Selection and pre-processing of programs. We selected 46 popular
Apache projects that have crypto API uses. The popularity is mea-
sured with the numbers of stars and forks in Github. The maxi-
mum, minimum and average Line of Code (LoC) are around 2, 571K
(Hadoop), 1.1K (Commons Crypto) and 402K, respectively. We per-
form subproject dependency analysis to build DAGs by parsing
build scripts. Subproject dependency analysis was automated for
gradle and maven, and was manual for Ant. We identified the root-
subprojects, which are sub-projects that have no incoming edges on
the subproject dependency DAG. We analyzed 94 root-subprojects
in total7. We downloaded 6, 181 high popularity Android apps from
the Google app market covering 58 categories. The median value of
the number of apps per category is 120. We used Soot to decompile
.apk files to Java bytecode in order to interface with CryptoGuard.
We use online APK decompiler to obtain human-readable source
code for manual verification.
We ran 4 concurrent instances of CryptoGuard in an Intel Xeon(R)
X5650 server (2.67GHz CPU and 32GB RAM). For Apache, the av-
erage runtime was 3.3 minutes with a median of around 1 minute.
For Android, we terminated unfinished analysis after 10 minutes.
The average runtime was 3.2 minutes with a median of 2.85 min-
utes, including the cutoff ones. 552 (9%) of 6,181 app’s analysis did
not finish within 10 minutes, on which CryptoGuard generated
partial results. Most of them missed results from Rule 7, which
CryptoGuard runs the last.

6.1 Security Findings in Apache Projects
Out of the 46 Apache projects, 39 projects have at least one type
of cryptographic misuses and 33 projects have at least two types.
Table 9 summarizes our security findings in screening Apache
7We exclude 15 test root-subprojects.
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Figure 4: The impact of the orthogonal exploration depth on F1 scores and the number of discovered constants in (a), runtime
in (b), and analysis properties in (c) for 8 rules.

projects. Predictable keys (Rules 1 and 2), HTTP URL (Rule 7),
insecure hash functions (Rule 16), and the insecure PRNGs (Rule
9) are the most common types of vulnerabilities in Apache. As
predictable values, we only observed constants for all these rules.
We did not observe any predictable seeds under Rule 8.

1 <http:tlsClientParameters disableCNCheck="true">

2 ...

3 </http:tlsClientParameters>

(a) A portion of https-cfg-client.xml

1 ...

2 } else if (tlsClientParameters.isDisableCNCheck()) {

3 verifier = new AllowAllHostnameVerifier();

4 }

(b) A portion of SSLUtils.java

Figure 5: Disabled hostname verification in Apache Cxf.

1 public static String sendUpsRequest(...) {

2 ...

3 http.setAllowUntrusted(true);

4 ... }

(a) A portion of UpsServices.java

1 SSLContext getSSLContext(String alias, boolean trustAny) {

2 ...

3 TrustManager[] tm;

4 if (trustAny) {

5 tm = SSLUtil.getTrustAnyManagers(); } ... }

(b) A portion of SSLUtil.java

Figure 6: Trusting all certificates in Apache Ofbiz.

6.1.1 Vulnerabilities from Predictable Secrets. 16 Apache
projects (37 sub-rootprojects) have hardcoded keys (Rule 1, 2). Three
(Meecrowave, Kylin, and Cloudstack) of them use hardcoded sym-
metric keys (Rule 1). Meecrowave uses DESede (i.e., Triple DES8)
for obfuscation purpose. Unfortunately, deterministic keys make
it trivial to break the obfuscation. Kylin (635 Forks, 1325 Stars)
uses AES to encrypt user passwords. However, using hardcoded
keys makes these passwords vulnerable. In Apache Cloudstack, it
appears that hardcoded keys are used in the test code, which is
accidentally packaged with the production code.
8Triple DES itself is considered insecure. OpenSSL removed the support of Triple DES.
NIST recommended moving to AES as soon as possible [71].

For Rule 2, most of the hardcoded passwords in PBE serve
as the default. The most common default password for PBE
is masterpassphrase (e.g., Ambari and Knox). Manifoldcf uses
NowIsTheTime. Setting PBE to take the default hardcoded pass-
words without sufficient warnings are risky. Distributions using
the default configuration are susceptible to the recovery of the
plaintext password by an attacker who has the access to the PBE
ciphertext. Apache Ranger (165 forks, 155 stars) uses a hardcoded
password as default for PBE for all distributions. Its installation
Wiki does not mention about it. System administrators unaware of
this setup are likely not to change the default. This coding practice
significantly weakens the security guarantee of PBE.

For Rule 3, most common hardcoded passwords for KeyStores
(for storing private keys) are changeit (e.g., Tomcat, Knox, Judi,
Ofbiz and Wss4j) and none (e.g., Knox, Hive and Hadoop). Most
of them are set as default. There are 9 projects that have both
predictable keys (Rules 1 and 2) and hardcoded KeyStore passwords
(Rule 3), indicating persistent insecure coding styles.
Insecure common practices. During manual analysis, we found
three types of insecure common practices in Apache projects for
storing secrets: i) hard-coding default keys or passwords in the
source code, ii) storing plaintext keys or passwords in configura-
tion files, and iii) storing encrypted passwords in configuration
files with decryption keys in plaintext in source code or configu-
ration. Java provides a special security APIs (e.g., Callback and
CallbackHandler) to prompt users for secrets (e.g., passwords).
However, none of these projects support this option.

Sysadmins are forced to store plaintext passwords in the filesys-
tem unless they personally modify the code. The biggest danger
that these insecure secret-storage practices bring to users is proba-
bly the inflated sense of security and not being able to know the
actual risks.

6.1.2 Vulnerabilities from SSL/TLS MitM. Man-in-the-Middle
(MitM) vulnerabilities are high risk in our threat model. 5 Apache
projects (8 root-subprojects) have dummy hostname verifiers that
accept any hostnames (Rule 4), including Spark (15086 forks, 16324
stars), Ambari (814 forks, 778 stars), Cxf (706 forks, 398 stars), Ofbiz,
and Meecrowave. 6 Apache projects have dummy trust managers
that trust any certificates (Rule 5), including Spark, Ambari, Cloud-
stack, Qpid-broker, Jclouds, and Ofbiz. It appears that most projects
offer them as an additional connectivity option.



Our manual analysis reveals that some projects set this insecure
implementation as default (e.g., Figure 5 and Figure 6). In Figure 6,
we see that Ofbiz uses insecure SSL/TLS configurations by default
while using UPS (a shipping company) service. When plain sockets
are used, it is recommended to verify the hostname manually. We
found 3 projects that do not follow this rule and accept any arbitrary
hostnames. We also found 7 projects (24 root-subprojects) that
occasionally use the HTTP protocol for communication.

6.1.3 Medium and Low Severity Vulnerabilities. It is important to
be aware of the medium and low-risk vulnerabilities in the system
and to recognize that the risk levels may increase under different
adversarial models.

We found hardcoded salts in 4 projects including Apache Ranger,
Manifoldcf, Juddi, and Wicket. We also observe the use of ECB
mode in AES in 5 projects and predictable IVs in 2 projects with a
total of 40 occurrences. We found 5 projects that use PBE with less
than 1,000 iterations (Rule 13). Ranger and Wicket projects use 17
iterations for PBE; and Incubator-Taverna-Workbench and Juddi
projects use 20 iterations, much fewer than the required 1,000.

Listing 1: A vulnerable code snippet from Apache Ranger
1 PBEKeySpec getPBEParameterSpec(String password) throws Throwable {

2 MessageDigest md = MessageDigest.getInstance(MD_ALGO); // MD5

3 byte[] saltGen = md.digest(password.getBytes());

4 byte[] salt = new byte[SALT_SIZE];

5 System.arraycopy(saltGen, 0, salt, 0, SALT_SIZE);

6 int iteration = password.toCharArray().length + 1;

7 return new PBEKeySpec(password.toCharArray(), salt, iteration); }

Listing 1 shows a code snippet from Ranger, which has multiple
issues. The number of iterations is proportional to the password
size (Line 6), which is far less than the required 1, 000. In addi-
tion, this code offers a timing side-channel. An adversary capable
of measuring PBE execution time (e.g., in multi-tenant environ-
ments) may learn the length of the password. This information can
substantially decrease the difficulty of dictionary attacks. Another
issue is that the salt is computed as the MD5 hash of the password
(Lines 2-3). An adversary obtaining the salt may quickly recover
the password. The salt’s dependence on the password itself also
breaks the indistinguishability requirement of PBE under chosen
plaintext attack.

Listing 2: Only checking the expiration (checkValidity) of
self-signed certificates in Yahoo Finance (TWStock) app, due
to (com.softmobile) library.

1 void checkServerTrusted(X509Certificate[] chain, String str){

2 if (chain == null || chain.length != 1) {

3 this.f7654a.checkServerTrusted(chain, str);

4 } else {

5 //Lack of signature verification and others

6 chain[0].checkValidity();}}

Listing 3: Ignoring exceptions in checkServerTrusted in Sina
Finance app.

1 void checkServerTrusted(X509Certificate[] chain, String str){

2 try {

3 this.f7427a.checkServerTrusted(chain, str);

4 } catch (CertificateException e) {}} //Ignores exception

We found various occurrences of Blowfish, DES, and RC4 ci-
phers for Rule 14. Under Rule 15, we found 3 occurrences of using

default key size of 1024 and 9 other occurrences that explicitly ini-
tialize the key size to 1024. 23 projects use java.util.Random
as a PRNG (Rule 9), where two of them set static seeds to
java.util.Random. We do not observe any deterministic seed to
a java.security.SecureRandom (Rule 8).

Listing 4: SSLSocket without manual hostname verification
in ProTaxi Driver app.

1 try {

2 SSLContext instance = SSLContext.getInstance("TLS");

3 ...

4 this.webSocketClient

5 .setSocket(instance.getSocketFactory().createSocket());

6 } catch (Throwable e) { ... }

7 this.webSocketClient.connect();

6.2 Security Findings in Android Apps
Violations in apps or in libraries? We distinguished app’s own
code from libraries by using the package information from
AndroidManifest.xml.9 Android also uses it during R.java file
generation (robust against obfuscation). We found that on aver-
age 95% of the detected vulnerabilities come from libraries
(Table 4). This result extends the observation from 7 types of vul-
nerabilities (reported in [19]) to 16.

Table 4 shows the distribution of vulnerability sources for
each rule. For hardcoded KeyStore passwords (Rule 3), all vio-
lations come from libraries. Most frequent hardcoded KeyStore
password is notasecret, which is used to access certificates
and keys in Google libraries (e.g., *.googleapis.GoogleUtils,
*.googleapis.*.GoogleCredential).

Besides Google, other high-profile library sources include Face-
book, Apache, Umeng, and Tencent (Table 5). These libraries fre-
quently appear in different applications. We distinguished these
libraries using base packages. CryptoGuard can detect API misuses
in obfuscated packages, i.e., any violations from within the obfus-
cated code are also reported. However, we are unable to report
the vendors of obfuscated libraries. Pinpointing the source of an
obfuscated package is an active area of research [19].
Overview of other Android findings. We found exposed secrets, sim-
ilar to Apache projects. Table 9 summarizes the discovered vul-
nerabilities in Android applications. The categories of untrusted
PRNG (Rule 9) and broken hash (Rule 16) have the most violations.
Interestingly, we observed 544 cases of predictable seeds (Rule 8). 13
cases of them used time-stamps from <java.lang.System: long
currentTimeMillis()> API calls.

Compared with Apache projects, Android apps have
higher percentages of SSL/TLS API misuses (Rules 4, 5 and
6) and HTTP use (Rule 7). For example, 25.3% of Android apps
have dummy trust manager (Rule 5), which is more than twice the
number in Apache (11.7%) as shown in Table 9 in the appendix.

Our analysis can detect sophisticated cases that Google Play’s
built-in screening is likely to miss. We give code snippets for such
cases (Listing 2, 3, 4). CryptoGuard detects a case where develop-
ers allow unpinned self-signed certificates with a mere expiration
check, as shown in Listing 2. Another case is where developers
ignore the exception in checkServerTrusted method as shown
in Listing 3. In addition, CryptoGuard detects 271 occurrences

9An .apk contains both the app code and the libraries.



Table 3: Experimental results on the CryptoApi-Bench basic and CryptoApi-Bench advanced benchmarks (as of April 2019)
with CrySL, Coverity, SpotBugs and CryptoGuard. GTP stands for the ground truth positives. TP, FP, and FN are the number
of true positives, false positives, false negatives in a tool’s output, respectively. Pre. and Rec. represent precision and recall,
respectively. Tools are evaluated on 6 common rules (out of our 16 rules), i.e., the maximum common subset of all tools. For
these 6 rules, there are 6 correct cases (i.e., true negatives) in basic and 3 correct cases in advanced,which are used for computing
FPRs. Total alerts = TP + FP.

Tools CryptoApi-Bench: Basic CryptoApi-Bench: Advanced

GT:14 Summary
Inter-Pro.
(Two)
GT: 13

Inter-Pro.
(Multiple)
GT: 13

Field
Sensitive
GT: 13

False
Positive
GT: 3

Summary

TP FP FN FPR FNR Pre. Rec. TP FP FN TP FP FN TP FP FN TP FP FN FPR FNR Pre. Rec.
CrySL[47] 10 6 4 50.00 28.57 62.50 71.43 10 3 3 0 2 13 10 2 3 0 6 3 81.25 52.38 60.61 47.62
Coverity[2] 13 0 1 0.00 7.14 100.0 92.86 3 0 10 3 0 10 1 0 12 0 0 3 0.00 83.33 100.0 16.67
SpotBugs[3] 13 0 1 0.00 7.14 100.0 92.86 0 0 13 0 12 13 0 0 13 0 0 3 80.00 100.0 0.00 0.00

CryptoGuard 14 0 0 0.00 0.00 100.0 100.0 12 0 1 12 0 1 13 0 0 3 0 0 0.00 4.76 100.0 95.24

Table 4: Distribution of vulnerabilities in Android apps.

Library Library App Itself Total
(Total) (Unique)

(1,2) Predictable Keys 11,634 (93.4%) 5,940 823 (6.6%) 12,457
(3) Hardcoded Store Password 431 (94.1%) 170 27 (5.8%) 458
(4) Dummy Hostname Verifier 1,148 (99.3%) 51 7 (0.7%) 1,155
(5) Dummy Cert. Validation 3,715 (96.3%) 1,317 141 (3.7%) 3,856
(6) Used Improper Socket 270 (99.6.4%) 13 1 (0.4%) 271
(7) Used HTTP 7,687 (92.5%) 2,105 623 (7.5%) 8,321
(8) Predictable Seeds 522 (96.0%) 101 22 (4.0%) 544
(9) Untrusted PRNG 26,312 (91.7%) 8,679 2,393 (8.3%) 36,223
(10) Predictable Salts 1,638 (93.2%) 774 119 (6.8%) 1,757
(11) ECB in Symm. Crypto 1657 (93.1%) 682 123 (6.9%) 1,780
(12) Predictable IVs 11,357 (94.2%) 6,048 692 (5.8%) 12,089
(13) <1000 PBE iterations 294 (94.2%) 129 18 (57.8%) 312
(14) Broken Symm. Crypto 1,668 (95.8%) 753 74 (4.2%) 1,742
(15) Insecure Asymm. Crypto 4 (3.6%) 3 107 (96.4%) 111
(16) Broken Hash 49,257 (99.0%) 7509 496 (1.0%) 49,769
Total 117,594 (95.40%) 34,274 5,666 (4.60%) 130,845

Table 5: Violations in 5 popular libs (manually confirmed).

Package name Violated rules
com.google.api 3, 4, 5, 7
com.umeng.analytics 7, 9, 12, 16
com.facebook.ads 5, 9, 16
org.apache.commons 5, 9, 16
com.tencent.open 2, 7, 9

of improper use of SSLSocket without manual Hostname verifica-
tion in 210 apps. One such example is shown in Listing 4, where
SSLSocket is used in WebSocketClient without manually veri-
fying the hostname 10. In comparison, Google Play’s inspection
appears to only detect obvious misuses [5].

Grouping security violations by app popularity or category did
not show substantial differences across groups.

6.3 Comparison with Existing Tools
We compare the accuracy and runtime of CryptoGuard with three
existing tools, i.e., CrySL [47], Coverity [2], and SpotBugs [3]11. We
use CryptoGuard 03.06.00 (commit id ea75a45), SpotBugs 3.1.0
(from SWAMP). Results from Coverity online were obtained be-
fore March 30, 2019. For CrySL, we analyze Apache projects with
CrySL 2.0 (commit id 5f531d1) and Android applications with CrySL-
Android 1.0.0 (commit id 856b1da) [1].
10Guide for the correct use can be found at https://developer.android.com/training/art
icles/security-ssl#WarningsSslSocket.
11CryptoLint’s code is unavailable.

Benchmarkpreparation. First, we12 had to constructCryptoApi-
Bench, a comprehensive benchmark for comparing the quality of
cryptographic vulnerability detection tools. Regarding the existing
benchmark DroidBench [18], i) DroidBench does not cover crypto-
graphic APIs, ii) the free web version of Coverity requires source
code, however DroidBench only contains APK binaries.

CryptoApi-Bench covers all 16 cryptographic rules specified
in Table 1. As of April 2019, there are 38 basic test cases and 74
advanced test cases. The basic benchmark contains 25 straight-
forward API misuses and 13 correct API uses (i.e., true negative
cases). The advanced cases have more complex scenarios, includ-
ing 42 inter-procedural cases13, 20 field-sensitive cases, 9 false
positive test cases (for evaluating the ability of recognizing ir-
relevant elements), and 3 correct API uses (i.e., true negative
cases). Figures 8 and 9 in the appendix show the distributions
of test cases per rule and per API, respectively. A more recent
version of the benchmark with more diverse test cases can be
found in [17]. See Github for the most updated version https:
//github.com/CryptoGuardOSS/cryptoapi-bench.
Benchmark comparison. Tomaintain fairness in our comparison,
we only report the benchmark results for the six shared rules (1, 2, 3,
11, 14, 16) that are covered by all the tools, CrySL [47], Coverity [2],
SpotBugs [3], and ours. Due to the lack of documentation, we had
to infer a tool’s coverage based on whether or not it ever generates
any alert in that category. We show the results in Table 3. SpotBugs,
Coverity, and CryptoGuard perform well on the basic benchmark.
For CrySL, its errors are partly due to their rule definitions being
very specific. For example, CrySL raises an alert if a cryptographic
key is not directly obtained from the key generator. However, in
some cases, a previously generated cryptographic key can be used
securely in the code without a key generator. For cryptographic
passwords, CrySL raises an alert if it is derived from a String, likely
because Java recommends using char[] so that a password can be
wiped after use. However, this String-based policy would miss hard-
coded passwords defined in char[], generating false negatives. For
the advance benchmark, both CrySL and SpotBugs generate false
positives, when a variable is passed through multiple methods. For
all cases, Coverity has zero false positives, likely because of the use

12The person (third author) who led the benchmark design is different from the person
(first author) who implemented CryptoGuard.
1321 cases involve two methods and 21 cases involve more than two methods.

https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://github.com/CryptoGuardOSS/cryptoapi-bench
https://github.com/CryptoGuardOSS/cryptoapi-bench


Table 6: Summary of average runtime (in seconds) across all
completed runs for CrySL and CryptoGuard. We evaluated
30 Apache root-subprojects and 30 Android apps, each with
3 runs. Incmpl stands for the number of incomplete analy-
ses. Standard deviations (std) are computed across project-
s/apps. Variations across runs are negligible.

Tool Apache root-subprojects Android applications
Incmpl. Avg. (std) Median Incmpl. Avg. (std) Median

CrySL 18 16.5 (18.0) 6.9 4 15.7 (44.1) 5.2
Ours 0 12.7 (14.2) 6.4 0 187.8 (488.3) 52.4

of symbolic execution and/or path-sensitive analysis14. However,
Coverity misses multiple advanced vulnerability scenarios (for rules
that it does cover in the basic benchmark).

Table 10 in the appendix presents the comparison for all 16
rules (not just the 6 common rules). When testing all 16 rules,
CryptoGuard failed to report 11 misuses (i.e., false negatives). We
discuss the causes in Section 7.
Runtime comparison. We compare CrySL and CryptoGuard
on 30 randomly selected Apache root-subprojects (LoC ranging
from 471K to 1K) and 30 Android applications (LoC ranging from
1,453K to 0.4K), with 3 runs each. The results are summarized
in Table 6 with full runtime details sorted by LoC in Figure 10
and LoC Table 8 in the appendix15. CryptoGuard completed all
tasks, demonstrating robust and efficient performance. CrySL exited
prematurely for 18 Apache projects and 4 Android apps due to
various errors (e.g., memory errors16). For Apache, CryptoGuard
exhibits better overall runtime performance than CrySL.

For Android, CrySL is faster, partly because CrySL only analyzes
the code that is reachable by an app’s life-cycle. In comparison,
CryptoGuard also covers third-party libraries (regardless of life-
cycle reachability) and produces more valid alerts. For example, for
Card_Maker_for_Pokemon, CryptoGuard and CrySL generated
2 and 0 alerts, respectively. For Cartoon_Avatar_Maker, Crypto-
Guard and CrySL generated 5 and 1 alerts, respectively. The 8
alerts are distinct true positives in libraries, which means Crypto-
Guard has 1 false negative and CrySL has 7 false negatives. Cryp-
toGuard’s false negative (an MD5 use) comes from the Android
core library com.google.android, which CryptoGuard currently
does not analyze.

For the free web version of Coverity, we are unable to obtain
its runtime. We choose not to compare the runtime with SpotBugs.
The comparison would not be meaningful, as its analysis is mostly
based on the syntactical matching of source code to known bug
patterns [43, 65].
Summary of findings. Refinements bring a 76% reduction in alarms
for Apache projects and an 80% reduction for Android applications.
For Apache projects, we manually confirmed that all the removed
alerts are indeed false positives. Manually examining the remaining
1,295 Apache alerts (after refinements) confirms our precision of
98.61%. 39 out of the 46 Apache projects have at least one type of
cryptographic misuses and 33 have at least two types. There is a

14Coverity is close sourced, so we are unable to confirm.
15LoC is obtained using online Java and APK decompilers and cloc command.
16We increased the heap size to 10GB for CrySL, while CryptoGuard ran with the
default 4GB heap memory.

widespread insecure practice of storing plaintext passwords in code
or in configuration files. Insecure uses of SSL/TLS APIs are set as
the default configuration in some cases. 5,596 (91%) out of the 6,181
Android apps have at least one type of cryptographic misuses and
4,884 (79%) apps have at least two types. 95% of the vulnerabilities
come from the libraries that are packaged with the applications.
Some libraries are from large software firms. CryptoGuard’s de-
tection for SSL/TLS API misuses is more comprehensive than the
built-in screening offered by Google Play.

7 LIMITATIONS AND DISCUSSION
No static analysis tool is perfect. CryptoGuard is no exception.
We discuss the detection limitations of CryptoGuard and future
improvements.

CryptoGuard runs the intra-procedural forward slicing for
Rules 6 and 15, where an inter-procedural forward slicing could po-
tentially improve the coverage. For Rule 15, this change might
not make much difference, as KeyPairGenerator creation and
its initialization usually occur in the same method. For Rule 6,
our current implementation ignores the direct sub-classes of
SSLSocketFactory to avoid false positives. Inter-procedural slic-
ing could extend the analysis to the sub-classes.
False positives. One source of false positives comes from the path
insensitivity. For example, CryptoGuard raises an alert if the vari-
able iteration is assigned with a value of 0 for the following code
snippet (from project jackrabbit-oak). However, this alert is a false
positive, since this assignment is on an infeasible path.
int iteration = 0;
...
if (iteration < NO_ITERATION) { // NO_ITERATION = 1

iteration = DEFAULT_ITERATION;
}

CryptoGuard detects the existence of API misuses in a code
base but does not verify that the vulnerable code will be triggered
at runtime. This issue is a general limitation of static program
analysis. Apache Spark confirmed insecure PRNG uses, but stated
that the affected code regions are not security critical.17 However,
eliminating this type of alerts is difficult as the analysis needs to
be aware of custom defined security criteria (e.g., what constitutes
critical security) with in-depth knowledge about project semantics.

Another source of false positives is clipping orthogonal explo-
ration. However, deeper exploration has impacts on both ends –
eliminating some false positives while increasing the overall num-
ber of (irrelevant) constants discovered. As our experiment shows
(in Figure 4), the net result of increasing the depth appears to be dis-
covering more irrelevant constants (as opposed to reducing them).
False negatives due to refinements. Refinements may cause
false negatives. For the full benchmark evaluation in Table 10 in
Appendix, CryptoGuard has 11 false negatives (i.e., missed de-
tection). All these cases are due to our refinements after clipping
orthogonal explorations. For example, RI-II would ignore 6A5B7C8A
as a pseudo-influence from the following instruction, if orthogonal
explorations to explore parseHexBinary are clipped.

byte[] key = DatatypeConverter.parseHexBinary("6A5B7C8A"). How-
ever, these conversions are mostly required to process values from
external sources (e.g., file system, network). Any such conversions

17It is unclear why Spark chose to use insecure PRNG, even for non-security purposes.



of static values under the rules of Table 1 are highly unlikely. In-
deed, outside the benchmark, we did not observe any such cases
during our manual investigation of Apache alerts. Additionally,
vulnerabilities originated from a clipped orthogonal method may
also be missed by CryptoGuard.

Conceptually, all such false negatives could be avoided by in-
creasing the depth of the orthogonal exploration (default depth
is 1). Our results in Figure 4 on 30 Apache root-subprojects with
varying depths of orthogonal explorations show that the increase
of the depth does not necessarily discover new true positive cases
or increase the F1 score.
Vulnerability disclosure and feedback. We have heard back
from a number of Apache projects regarding our vulnerability dis-
closure, including Tomcat, Hadoop, Hive, Spark, Ofbiz, Ambari, and
Ranger. Apache Spark removed the support of dummy hostname
verifier and dummy trust store. Apache Ranger fixed constant de-
fault values for PBE [11] and insecure cryptographic primitives [6].
Ofbiz promised to fix the reported issues of constant IVs and Key-
Store passwords. Regarding MD5, Apache Hadoop justifies that its
MD5 use is for the per-block checksums for Hadoop file systems
(HDFS)’s consistency and the setup does not assume the presence
of active adversaries. For Android libraries, we have submitted vul-
nerability reports to Google. Google closed our issue with 4 misuses
in Google libraries citing the lack of concrete exploit demonstra-
tions. Facebook, and Tencent have similar requirements. We also
received similar feedback from an Apache software foundation’s
administrator demanding concrete exploit demonstrations before
more reported issues can be examined.

Some developers explained that certain operational constraints
(e.g., backward compatibility for clients) prevent them from fixing
the problems. For example, Apache Tomcat server has to use MD5
in its digest authentication code, because major browsers do not
support secure hash functions (as defined in RFC 7616). However,
digest authentication is rarely used in the wild18. The thorniest
issue is secret storage. One justification for developers’ choice of
storing plaintext passwords or keys in file systems is for support-
ing humanless environments (e.g., automated scripts to manage
services). However, not all deployment scenarios are server farms
in a humanless environment. Projects should provide the secure
option by prompt human operators for passwords that can be used
to unlock/generate other passwords or keys on the fly. Not prop-
erly disclosing and documenting the insecure configurations does
a great disservice to the project’s users.

8 RELATEDWORK
Tools to detect cryptographic misuses. Cryptographic misuse de-
tection tools are typically constructed into two broad groups, i.e.,
static analysis (e.g., CryptoLint [33], MalloDroid [35], FixDroid [60],
CogniCrypt [46] and CrySL [47]) and dynamic analysis (e.g., SMV-
Hunter [68], AndroSSL [36] and K-Hunt [50]). For example, Mal-
loDroid [35] uses a list of known insecure implementations of
HostnameVerifier and TrustManager to screen Android apps.
In [44], authors showed that generating false positives is one of the
most significant barrier to adopt static analysis tools. This problem

18https://security.stackexchange.com/questions/152935/why-is-there-no-adoption-
of-rfc-7616-http-digest-auth

also exists in anomaly and intrusion detection systems [51, 75].
When screening large projects, virtually all static slicing solutions
in this space (e.g., [33]) might generate a non-negligible amount of
false positives. Contextual refinements similar to CryptoGuard’s
is necessary to achieve high precision in practice.

CrySL and CryptoGuard have different-but-overlapping se-
curity capabilities. Based on CrySL code and documentation, we
identified rules that CrySL supports, but CryptoGuard does not
cover. For example, CrySL covers rules to verify the correctness
of Signature and MAC generation procedures. CrySL also reports
non-crypto issues, e.g., variables not being used. On the flip side,
CryptoGuard supports rules that CrySL does not cover (Rules 4,
5, 7, 8, and 9), including dummy hostname verifier, dummy cer-
tificate validation, use of HTTP, predictable seeds, and untrusted
PRNG. For fairness, we only compare the intersected portion of
capabilities.

Other misuse detection tools (e.g., FixDroid [60] and Cog-
niCrypt [46]) were mainly built for the user-experience study
with the goal of making detection tools developer-friendly, as op-
posed to a deployment-quality screening solution. For example,
FixDroid focuses on providing real-time feedback to developers.
CogniCrypt’s [46] focus is on code generation (in Eclipse IDE) for
several common cryptographic tasks (e.g., data encryption). Some
dynamic analysis tools use a simple static analysis to first narrow
down the number of potential apps for dynamic analysis. For ex-
ample, SMV-Hunter [68] looks for apps that contain any custom
implementation of X509TrustManager or HostNameVerifier for
the initial screening.
Other tools. TaintCrypt [64] uses static taint analysis to discover
library-level cryptographic implementation issues in C/C++ cryp-
tographic libraries (e.g., OpenSSL). It uses symbolic execution
based path exploration to reduce false alarms, which is usually
costly. SSLLint [41] uses graph mining techniques to detect SS-
L/TLS API misuses in C/C++, where a program is represented
using program dependence graphs. Researchers found that mis-
using non-cryptographic APIs in Android also have serious se-
curity implications. These APIs include APIs to access sensitive
information (such as location, IMEI, and passwords) [59], APIs for
fingerprint protection [24], and cloud service APIs for information
storage [77]. Data driven techniques to identify API misuses have
been proposed [61, 76], which use lightweight static analysis to
infer detection rules from examples. In [57], authors proposed a
Bayesian framework for automatically learning correct API uses.
Efforts on automatically repairing insecure code have also been
reported [53, 54, 63]. Static code analysis has been extensively used
for other related software problems as well, including malware anal-
ysis and detection [34, 62, 73], vulnerability discoveries [24, 48], and
data-leak detection [26]. In [29], Chi et al. presented a system to in-
fer client behaviors by leveraging symbolic executions of client-side
code. They used such knowledge to filter anomalous traffic. Fuzzing
has been demonstrated to automatically discover software vulner-
abilities [31, 66, 67]. These techniques aim to find input guided
vulnerabilities that result in observable behaviors (e.g., triggering
program crashes [67] or anomalous protocol states [31, 66]). It is
unclear how to use fuzzing to detect cryptographic vulnerabilities
(e.g., predictable IVs/secrets, legacy primitives) that do not exhibit
easily observable anomalous behaviors.



9 CONCLUSIONS AND AN OPEN PROBLEM
We described our effort of producing a deployment-quality static
analysis tool CryptoGuard to detect cryptographic misuses in
Java programs that developers can routinely use. This effort led to
several crypto-specific contributions, including language-specific
contextual refinements for FP reduction, on-demand flow-sensitive,
context-sensitive, and field-sensitive program slicing, and bench-
mark comparisons of leading solutions. We also obtained a trove of
security insights into Java secure coding practices.

An open research problem is designing a compiler that au-
tomatically transforms a cryptographic vulnerability or rule into
a static-analysis-based code-screening algorithm, similar to what
CrySL provides, but with much higher expressiveness, precision,
and recall. Enabling stateful analysis capturing the lifecycle of cryp-
tographic objects in CryptoGuard is another useful future direction.
Unlike CrySL, CryptoGuard does not perform type-state analysis,
i.e., it does not check code against type-based state machines. The
lack of type-state analysis may cause an overestimation of vulner-
abilities. For example, our detection of predictable keys, based on
insecure instantiation of keys, cannot determine whether or not
the key will be used.
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11 APPENDIX
11.1 Other Refinement insights
RI-III: Removal of bookkeeping indices.

1 byte[] iv = new byte[] {0x0, 0x0, 0x0,

2 0x0, 0x0, 0x0, 0x0, 0x0}

Consider the Java statement above. After transforming into jim-
ple representation, this statement looks like the following list of
instructions.

1 $r15 = newarray (byte)[8]

2 $r15[0] = 0

3 $r15[1] = 0

4 $r15[2] = 0

5 $r15[3] = 0

6 $r15[4] = 0

7 $r15[5] = 0

8 $r15[6] = 0

9
10 $r2 = $r15

The hard coded size and the indices of an array can be regarded
as pseudo-influences. To address this false positives, we discard all
the constants that influences an array index. Also, any constant that
influences the size or the index parameter of a collection can also be
regarded as pseudo-influences. We regard List, Set as collections.
RI-IV: Removal of contextually incompatible constants.

Clipping of orthogonal invocations that doesn’t appear in an
assign statement can also cause false positives. To reduce false
alarms further, we also discard some constants constants based on
its type and context. Let’s consider, a class named PBEInfo is used
to store iteration count and salt and the analysis cannot explore
PBEInfo class. A basic use-def analysis will report 5 as a salt from
the following invoke instruction: specialinvoke r1.<KeyHolder:
void <init>(Integer, String)>(5, "5341453"). However, a
standalone Boolean or Integer constant is unlikely to be used as a
key, IV or salt, since their correspondingAPIs only allow byte arrays.
Also, any hard-coded size parameter (e.g., number of iterations in
PBE (Rule 13), key size for insecure asymmetric crypto (Rule 15)) is
unlikely to have any type other than Integer. Therefore, it is possible
to discard some of the pseudo-influences by considering the types
of a constant based on its context.
RI-V: Removal of constants in infeasible paths.

Some constant initializations are overwritten along the path
to the point of interest. Counting such constants with infeasible
influences will result in false positives. Since, empty strings and
nulls are used for initialization purpose and most often, these

https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea
https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea


Depth Runtime in Sec. (STD)
1 37.23 (49.75)
2 35.5 (39.03)
3 35.75 (39.09)
4 35.82 (39.23)
5 36.1 (38.97)
6 36.7 (39.63)
7 36.83 (39.64)
8 37.99 (40.34)
9 38.54 (41.22)
10 38.87 (41.94)

Table 7: The impact of clipping orthogonal explorations at
various depth on runtime across 30Apache root-subprojects.
STD is computed across projects. Variations across multiple
runs (3 runs) are negligible.

initialization are replaced with other values. To avoid false positive
for this case, depending on rules and the slicing criteria we discard
null and empty strings. For example, SecretKeySpec prohibits
keys to be null or empty. IvParameterSpec does not allow null
as IV. Also, PBEParameterSpec does not allow the salt to be null.

11.2 Other Evaluation Results
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Figure 7: Breakdown of the reduction of false positives due
to five of our refinement insights.
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Table 8: Lines of code (LoC) of 30 Apache root-subprojects
with their dependencies and 30 Android applications.

No. Apache Project LoC Android Applications LoC
1 hive 471k Square_Point_of_Sale 1,453k
2 meecrowave-runner 395k Alipay 1,400k
3 fop 185k Amazon_Kindle 1,256k
4 spark 155k Perfect365_Makeover 1,231k
5 hadoop 151k Manga_Reader 1,032k
6 kylin 151k Free_Bitcoin_Spinner 872k
7 tomee 118k AICoin 790k
8 jackrabbit-oak 102k LINE_WEBTOON 749k
9 airavata 89k Sephora_Shop_Makeup 726k
10 nifi 76k Audiobooks_from_Audible 711k
11 qpid-jms-amqp-0-x 66k Mint_Budget_Bills_Finance 673k
12 juddi 63k Money_Lover 627k
13 wss4j 42k Ulta_Beauty 570k
14 santuario-java 41k Daily_Bible_Journey 449k
15 plugin-yarn 35k iqboxyinc 429k
16 embeddedwebserver 34k Facebook_Pages_Manager 424k
17 abdera 31k Dictionary_Merriam_Webster 398k
18 cloudstack 28k Tiny_Scanner 371k
19 directory-server 23k misa.sothuchi 365k
20 manifoldcf 19k receipts 353k
21 tika 17k Auto_Makeup 338k
22 wicket 16k JW_Library 320k
23 taverna-workbench 10k Card_Maker_for_Pokemon 296k
24 shindig 10k Cartoon_Avatar_Maker 277k
25 activemq-artemis 7k Clairol_MyShade 227k
26 deltaspike 6k UPS_Mobile 220k
27 knox 6k ADP_Mobile_Solutions 203k
28 shiro 2k ebook_Renta 105k
29 meecrowave-core 1k jits.mobile.aya 3k
30 geronimo-gshell 1k zhangdan 0.4k



Table 9: The number of alerts in Apache (total 94 root-subprojects) and Android applications (6,181). For Rules 1, 2, 3, 8, 10, 12,
each constant/predictable value of an array/collection is considered as an individual violation.

Rules Apache Android
# of Root-subprojects # of Alerts Per Rule # of Applications #of Alerts Per Rule

(1,2) Predictable Keys 37 (39.36%) 264 1,617 (26.16%) 12,457
(3) Hardcoded Store Password 29 (30.85%) 148 218 (3.52%) 458
(4) Dummy Hostname Verifier 8 (8.51%) 12 800 (12.94%) 1,155
(5) Dummy Cert. Validation 11 (11.70%) 30 1,564 (25.30%) 3,856
(6) Used Improper Socket 4 (4.25%) 4 210 (3.39%) 271
(7) Used HTTP 24 (29.62%) 222 2,486 (40.22%) 8,321
(8) Predictable Seeds 0 (0%) 0 80 (1.29%) 544
(9) Untrusted PRNG 33 (35.10%) 142 5,194 (84.03%) 36,223
(10) Static Salts 21 (22.34%) 112 199 (3.21%) 1,757
(11) ECB mode for Symm. Crypto 16 (17.02 %) 41 882 (14.26%) 1,780
(12) Static IVs 4 (4.25 %) 41 913 (14.77%) 12,089
(13) <1000 PBE Iterations 25 (26.59 %) 43 151 (2.44%) 312
(14) Broken Symm. Crypto Algorithms 29 (30.85 %) 86 701 (11.34%) 1,742
(15) Insecure Asymm. Crypto 9 (10.98 %) 12 108 (1.74%) 111
(16) Broken Hash 42 (44.68 %) 138 5,272 (85.29%) 49,769

Table 10: Benchmark comparison of CrySL, Coverity, SpotBugs, and CryptoGuard on all 16 rules with CryptoApi-Bench’s 112
test cases (as of April 2019). There are 16 secure API use cases (13 in basic and 3 in advanced), which a tool should not raise
any alerts on. CryptoGuard successfully passed these 16 test cases. GTP stands for ground truth positive, which is the number
of positives in the benchmark. CryptoGuard has 11 false negatives, which we reported in Section 6 and discussed in Section 7.

No. Rules GTP CrySL Coverity SpotBugs CryptoGuard
TP FP TP FP TP FP TP FP

1 Predictable Cryptographic Key 5 0 4 3 0 2 0 5 0
2 Predictable Password for PBE 6 0 2 5 0 3 0 6 0
3 Predictable Password for KeyStore 5 0 5 3 0 2 0 5 0
4 Dummy Hostname Verifier 1 – – 1 0 1 0 1 0
5 Dummy Cert. Validation 1 – – 1 0 1 0 1 0
6 Used Improper Socket 4 – – 4 0 – – 4 0
7 Use of HTTP 4 – – – – – – 4 0
8 Predictable Seed 10 – – 1 0 – – 5 0
9 Untrusted PRNG 1 – – – – 1 0 1 0
10 Static Salt 5 5 1 – – – – 3 0
11 ECB in Symm. Crypto 4 2 1 1 0 1 1 4 0
12 Static IV 6 0 6 – – 6 0 4 0
13 <1000 PBE Iteration 5 2 1 – – – – 4 0
14 Broken Symm. Crypto 20 10 5 4 0 5 5 20 0
15 Insecure Asymm. Crypto 3 2 1 – – 0 1 2 0
16 Broken Hash 16 8 4 4 0 4 4 16 0

Total 96 29 30 27 0 26 11 85 0

Table 11: Rules that use intra-procedural backward program slicing to slice implemented methods of standard Java APIs and
their corresponding slicing criteria.

No. Method to Slice Rule Criterion

4.1 javax.net.ssl.HostnameVerifier: boolean verify(String,SSLSession) 4 return
5.1 void checkServerTrusted(X509Certificate[],String) 5 checkValidity()
5.2 void checkServerTrusted(X509Certificate[],String) 5 throw
5.3 java.security.cert.X509Certificate[] getAcceptedIssuers() 5 return

Table 12: Java APIs used as slicing criteria in our intra-procedural forward program slicing and their corresponding security
rules.

No. Slicing Criterion for Intra Procedural Forward Program Slicing Rule Semantic

6.1 javax.net.ssl.SSLSocketFactory: SocketFactory getDefault() 6 Create SocketFactory
6.2 javax.net.ssl.SSLContext: SSLSocketFactory getSocketFactory() 6 Create SocketFactory
15.1 java.security.KeyPairGenerator: KeyPairGenerator getInstance(java.lang.String) 15 Create KeyPairGenerator
15.2 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String,String)> 15 Create KeyPairGenerator
15.3 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String,Provider) 15 Create KeyPairGenerator



Table 13: Java APIs used as slicing criteria in our inter-procedural backward slicing and their corresponding security rules.
Boldface indicates the parameter of interest.

No. API Rule Semantic

1.1 javax.crypto.spec.SecretKeySpec: void <init>(byte[],String) 1 Set key
1.2 javax.crypto.spec.SecretKeySpec: void <init>(byte[],int,int,String) 1 Set key
2.1 javax.crypto.spec.PBEKeySpec: void <init>(char[]) 2 Set password
2.2 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int,int) 2 Set password
2.3 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int) 2 Set password
3.1 java.security.KeyStore: void load(InputStream,char[]) 3 Set password
3.2 java.security.KeyStore: void store(OutputStream,char[]) 3 Set password
3.3 java.security.KeyStore: void setKeyEntry(String,Key,char[],Certificate[]) 3 Set password
3.4 java.security.KeyStore: Key getKey(String,char[]) 3 Set password
7.1 java.net.URL: void <init>(String) 7 Set URL
7.2 java.net.URL: void <init>(String,String,String) 7 Set URL
7.3 java.net.URL: void <init>(String,String,int,String) 7 Set URL
7.4 okhttp3.Request$Builder: Request$Builder url(String) 7 Set URL
7.5 retrofit2.Retrofit$Builder: Retrofit$Builder baseUrl(String) 7 Set URL
8.1 java.security.SecureRandom: void <init>(byte[]) 8 Set seed
8.2 java.security.SecureRandom: void setSeed(byte[]) 8 Set seed
8.3 java.security.SecureRandom: void setSeed(long) 8 Set seed
10.1 javax.crypto.spec.PBEParameterSpec: void <init>(byte[],int) 10 Set salt
10.2 javax.crypto.spec.PBEParameterSpec: void <init>(byte[],int,AlgorithmParameterSpec) 10 Set salt
10.3 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int,int) 10 Set salt
10.4 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int) 10 Set salt
11.1 javax.crypto.Cipher: Cipher getInstance(String) 11, 14 Select cipher
11.2 javax.crypto.Cipher: Cipher getInstance(String, String) 11, 14 Select cipher
11.3 javax.crypto.Cipher: Cipher getInstance(String, Provider) 11, 14 Select cipher
12.1 javax.crypto.spec.IvParameterSpec: void <init>(byte[]) 12 Set IV
12.2 javax.crypto.spec.IvParameterSpec: void <init>(byte[],int,int) 12 Set IV
13.1 javax.crypto.spec.PBEParameterSpec: void <init>(byte[],int) 13 Set iterations
13.2 javax.crypto.spec.PBEParameterSpec: void <init>(byte[],int,AlgorithmParameterSpec) 13 Set iterations
13.3 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int,int) 13 Set iterations
13.4 javax.crypto.spec.PBEKeySpec: void <init>(char[],byte[],int) 13 Set iterations
15.1 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String) 15 Select generator
15.2 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String,String)> 15 Select generator
15.3 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String,Provider) 15 Select generator
15.4 java.security.KeyPairGenerator: void initialize(int) 15 Set key size
15.5 java.security.KeyPairGenerator: void initialize(int,java.security.SecureRandom) 15 Set key size
15.6 java.security.KeyPairGenerator: void initialize(AlgorithmParameterSpec) 15 Set key size
15.7 java.security.KeyPairGenerator: void initialize(AlgorithmParameterSpec,SecureRandom) 15 Set key size
16.1 java.security.MessageDigest: MessageDigest getInstance(String) 16 Select hash
16.2 java.security.MessageDigest: MessageDigest getInstance(String, String) 16 Select hash
16.3 java.security.MessageDigest: MessageDigest getInstance(String, Provider) 16 Select hash
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Figure 10: Runtime comparison in log scale of CryptoGuard and CrySL on 30 Apache root-subprojects in (a) and 30 Android
applications in (b), ordered by decreasing lines of code (LoC). * indicates crash. CryptoGuard successfully completed all tasks.
The LoCs are shown in Table 8.
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